induced polarization
Recently Published Documents


TOTAL DOCUMENTS

1946
(FIVE YEARS 367)

H-INDEX

75
(FIVE YEARS 7)

2022 ◽  
pp. 163779
Author(s):  
Jin-Ping Wang ◽  
Haidee Mana-ay ◽  
Cheng-Sao Chen ◽  
Shu-Chih Haw ◽  
Chi-Shun Tu ◽  
...  
Keyword(s):  

Author(s):  
Danila O. Zakharov ◽  
Konstantin Chernichenko ◽  
Kristina Sorochkina ◽  
Shengjun Yang ◽  
Ville-Veikko Telkki ◽  
...  

CATENA ◽  
2021 ◽  
Vol 207 ◽  
pp. 105596
Author(s):  
Prashant Kumar ◽  
Prarabdh Tiwari ◽  
Anand Singh ◽  
Arkoprovo Biswas ◽  
Tapas Acharya

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alyssa N. Gaiser ◽  
Cristian Celis-Barros ◽  
Frankie D. White ◽  
Maria J. Beltran-Leiva ◽  
Joseph M. Sperling ◽  
...  

AbstractControlling the properties of heavy element complexes, such as those containing berkelium, is challenging because relativistic effects, spin-orbit and ligand-field splitting, and complex metal-ligand bonding, all dictate the final electronic states of the molecules. While the first two of these are currently beyond experimental control, covalent M‒L interactions could theoretically be boosted through the employment of chelators with large polarizabilities that substantially shift the electron density in the molecules. This theory is tested by ligating BkIII with 4’-(4-nitrophenyl)-2,2’:6’,2”-terpyridine (terpy*), a ligand with a large dipole. The resultant complex, Bk(terpy*)(NO3)3(H2O)·THF, is benchmarked with its closest electrochemical analog, Ce(terpy*)(NO3)3(H2O)·THF. Here, we show that enhanced Bk‒N interactions with terpy* are observed as predicted. Unexpectedly, induced polarization by terpy* also creates a plane in the molecules wherein the M‒L bonds trans to terpy* are shorter than anticipated. Moreover, these molecules are highly anisotropic and rhombic EPR spectra for the CeIII complex are reported.


2021 ◽  
Vol 62 (12) ◽  
pp. 1440-1448
Author(s):  
N.O. Kozhevnikov ◽  
E.Yu. Antonov

Abstract —Inductively induced electric polarization (IIP) is one of the aftereffects inherent in the geologic materials and affecting results of the transient electromagnetic method. Its effect on the inductive transient response manifests itself as a nonmonotonic EMF decay, including the polarity reversal. The dependence of IIP on many conditions makes it difficult to study the basic regularities in its manifestation. One of the ways to address this problem is to present the simulation results as a normalized transient response. From the most general point of view, the intensity and time range of the IIP manifestation are controlled by the competition between induction and induced polarization phenomena. Induced polarization manifests itself differently, depending on the transmitter used for the excitation of the ground response. Therefore, when studying polarizable ground, the results of the conventional IP method and those of the TEM method do not always correlate.


Sign in / Sign up

Export Citation Format

Share Document