scholarly journals Anderson Localization for Time Periodic Random Schrödinger Operators

2003 ◽  
Vol 28 (1-2) ◽  
pp. 333-347 ◽  
Author(s):  
Avy Soffer ◽  
Wei-Min Wang
2019 ◽  
Vol 27 (4) ◽  
pp. 253-259
Author(s):  
Hayk Asatryan ◽  
Werner Kirsch

Abstract We consider one-dimensional random Schrödinger operators with a background potential, arising in the inverse scattering problem. We study the influence of the background potential on the essential spectrum of the random Schrödinger operator and obtain Anderson localization for a larger class of one-dimensional Schrödinger operators. Further, we prove the existence of the integrated density of states and give a formula for it.


2020 ◽  
pp. 2060010
Author(s):  
C. Rojas-Molina

In this note, we review some results on localization and related properties for random Schrödinger operators arising in aperiodic media. These include the Anderson model associated to disordered quasicrystals and also the so-called Delone operators, operators associated to deterministic aperiodic structures.


2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Luca Fresta

AbstractWe study discrete random Schrödinger operators via the supersymmetric formalism. We develop a cluster expansion that converges at both strong and weak disorder. We prove the exponential decay of the disorder-averaged Green’s function and the smoothness of the local density of states either at weak disorder and at energies in proximity of the unperturbed spectrum or at strong disorder and at any energy. As an application, we establish Lifshitz-tail-type estimates for the local density of states and thus localization at weak disorder.


Sign in / Sign up

Export Citation Format

Share Document