scholarly journals Surface and intracellular distribution of a putative neuronal nicotinic acetylcholine receptor.

1986 ◽  
Vol 103 (1) ◽  
pp. 205-214 ◽  
Author(s):  
M H Jacob ◽  
J M Lindstrom ◽  
D K Berg

Chick ciliary ganglion neurons have a membrane component that shares an antigenic determinant with the main immunogenic region (MIR) of nicotinic acetylcholine receptors from skeletal muscle and electric organ. Previous studies have shown that the component has many of the properties expected for a ganglionic nicotinic acetylcholine receptor, and that its distribution on the neuron surface in vivo is restricted predominantly to synaptic membrane. Here we report the presence of a large intracellular pool of the putative receptor in embryonic neurons and demonstrate that it is associated with organelles known to comprise the biosynthetic and regulatory pathways of integral plasma membrane proteins. Embryonic chick ciliary ganglia were lightly fixed, saponin-permeabilized, incubated with an anti-MIR monoclonal antibody (mAb) followed by horseradish peroxidase-conjugated secondary antibody, reacted for peroxidase activity, and examined by electron microscopy. Deposits of reaction product were associated with synaptic membrane, small portions of the pseudodendrite surface membrane, most of the rough endoplasmic reticulum, small portions of the nuclear envelope, some Golgi complexes, and a few coated pits, coated vesicles, multivesicular bodies, and smooth-membraned vacuoles. No other labeling was present in the neurons. The labeling was specific in that it was not present when the anti-MIR mAb was replaced with either nonimmune serum or mAbs of different specificity. Chick dorsal root ganglion neurons thought to lack nicotinic acetylcholine receptors were not labeled by the anti-MIR mAb. Substantial intracellular populations have also been reported for the muscle acetylcholine receptor and brain voltage-dependent sodium channel alpha-subunit. This may represent a general pattern for multisubunit membrane proteins during development.

2004 ◽  
Vol 113 (1-2) ◽  
pp. 32-42 ◽  
Author(s):  
Rainer Viktor Haberberger ◽  
Nadia Bernardini ◽  
Michaela Kress ◽  
Petra Hartmann ◽  
Katrin Susanne Lips ◽  
...  

1989 ◽  
Vol 237 (1289) ◽  
pp. 501-514 ◽  

The nitromethylene heterocyclic compound 2(nitromethylene)tetrahydro) 1, 3-thiazine (NMTHT) inhibits the binding of [ 125 I) α -bungarotoxin to membranes prepared from cockroach ( Periplaneta americana ) nerve cord and fish ( Torpedo californica ) electric organ. Electrophysiological studies on the cockroach fast coxal depressor motorneuron (D f ) reveal a dose-dependent depolarization in response to bath-applied NMTHT. Responses to ionophoretic application of NMTHT on to the cell-body membrane of motorneuron D f are suppressed by bath-applied mecamylamine (1.0 x 10 -4 M) and α -bungarotoxin (1.0 x 10 -7 M). These findings, together with the detection of a reversal potential close to that estimated for acetylcholine, provide evidence for an agonist action of this nitromethylene on an insect neuronal nicotinic acetylcholine receptor. The binding of [ 3 H]H 12 -histrionicotoxin to Torpedo membranes was enhanced in the presence of NMTHT indicating an agonist action at this vertebrate peripheral nicotinic acetylcholine receptor. NMTHT is ineffective in radioligand binding assays for rat brain GABA A receptors, rat brain L-glutamate receptors and insect ( Musca domestica ) L-glutamate receptors. Partial block of rat brain muscarinic acetylcholine receptors is detected at millimolar concentrations of NMTHT. Thus nitromethylenes appear to exhibit selectivity for acetylcholine receptors and exhibitan agonist action at nicotinic acetylcholine receptors.


2001 ◽  
Vol 86 (1) ◽  
pp. 183-189 ◽  
Author(s):  
Esteve Ros ◽  
Jordi Aleu ◽  
Inmaculada Gomez De Aranda ◽  
Carles Cantí ◽  
Yuan-Ping Pang ◽  
...  

Bis(7)-tacrine is a potent acetylcholinesterase inhibitor in which two tacrine molecules are linked by a heptylene chain. We tested the effects of bis(7)-tacrine on the spontaneous synaptic activity. Miniature endplate potentials (MEPPs) were recorded extracellularly on slices of electric organ of Torpedo marmorata. Bis(7)-tacrine, at a concentration of 100 nM, increased the magnitudes that describe MEPPs: amplitude, area, rise time, rate of rise, and half-width. We also tested the effect of bis(7)-tacrine on nicotinic acetylcholine receptors by analyzing the currents elicited by acetylcholine (100 μM) in Torpedo electric organ membranes transplanted in Xenopus laevis oocytes. Bis(7)-tacrine inhibited the acetylcholine-induced currents in a reversible manner (IC50 = 162 nM). The inhibition of nicotinic acetylcholine receptors was not voltage dependent, and bis(7)-tacrine increased the desensitization of nicotinic acetylcholine receptors. The Hill coefficient for bis(7)-tacrine was −0.72 ± 0.02, indicating that bis(7)-tacrine binds to the nicotinic acetylcholine receptor in a molecular ratio of 1:1, but does not affect the binding of α-bungarotoxin with the nicotinic acetylcholine receptor. In conclusion, bis(7)-tacrine greatly increases the spontaneous quantal release from peripheral cholinergic terminals at a much lower concentration than tacrine. Bis(7)-tacrine also blocks acetylcholine-induced currents of Torpedo electric organ, although the mechanism is different from that of tacrine: bis(7)-tacrine enhances desensitization, whereas tacrine reduces it.


Sign in / Sign up

Export Citation Format

Share Document