scholarly journals A monoclonal antibody that blocks the activity of a neurite regeneration-promoting factor: studies on the binding site and its localization in vivo.

1986 ◽  
Vol 103 (4) ◽  
pp. 1383-1398 ◽  
Author(s):  
A Y Chiu ◽  
W D Matthew ◽  
P H Patterson

Work from several laboratories has identified a proteoglycan complex secreted by a variety of non-neuronal cells that can promote neurite regeneration when applied to the surface of culture dishes. Using a novel immunization protocol, a monoclonal antibody (INO) was produced that blocks the activity of this outgrowth-promoting factor (Matthew, W. D., and P. H. Patterson, 1983, Cold Spring Harbor Symp. Quant. Biol. 48:625-631). We have used the antibody to analyze the components of the active site and to localize the complex in vivo. INO binding is lost when the complex is dissociated; if its components are selectively reassociated, INO binds only to a complex containing two different molecular weight species. These are likely to be laminin and heparan sulfate proteoglycan, respectively. On frozen sections of adult rat tissues, INO binding is present on the surfaces of glial cells of the peripheral, but not the central, nervous system. INO also binds to the basement membrane surrounding cardiac and skeletal muscle cells, and binding to the latter greatly increases after denervation. In the adrenal gland and kidney, INO selectively reacts with areas rich in basement membranes, staining a subset of structures that are immunoreactive for both laminin and heparan sulfate proteoglycan. In general, the outgrowth-blocking antibody binds to areas known to promote axonal regeneration and is absent from areas known to lack this ability. This suggests that this complex, which is active in culture, may be the physiological substrate supporting nerve regeneration in vivo.

1987 ◽  
Vol 105 (4) ◽  
pp. 1901-1916 ◽  
Author(s):  
J R Couchman

A heparan sulfate proteoglycan (HSPG) synthesized by murine parietal yolk sac (PYS-2) cells has been characterized and purified from culture supernatants. A monospecific polyclonal antiserum was raised against it which showed activity against the HSPG core protein and basement membrane specificity in immunohistochemical studies on frozen tissue sections from many rat organs. However, there was no reactivity with some basement membranes, notably those of several smooth muscle types and cardiac muscle. In addition, it was found that pancreatic acinar basement membranes also lacked the HSPG type recognized by this antiserum. Those basement membranes that lacked the HSPG strongly stained with antisera against laminin and type IV collagen. The striking distribution pattern is possibly indicative of multiple species of basement membrane HSPGs of which one type is recognized by this antiserum. Further evidence for multiple HSPGs was derived from the finding that skeletal neuromuscular junction and liver epithelia also did not contain this type of HSPG, though previous reports have indicated the presence of HSPGs at these sites. The PYS-2 HSPG was shown to be antigenically related to the large, low buoyant density HSPG from the murine Engelbreth-Holm swarm tumor. It was, however, confirmed that only a single population of antibodies was present in the serum. Despite the presence of similar epitopes on these two proteoglycans of different hydrodynamic properties, it was apparent that the PYS-2 HSPG represents a basement membrane proteoglycan of distinct properties reflected in its restricted distribution in vivo.


1989 ◽  
Vol 109 (4) ◽  
pp. 1837-1848 ◽  
Author(s):  
P Simon-Assmann ◽  
F Bouziges ◽  
M Vigny ◽  
M Kedinger

The deposition of intestinal heparan sulfate proteoglycan (HSPG) at the epithelial-mesenchymal interface and its cellular source have been studied by immunocytochemistry at various developmental stages and in rat/chick interspecies hybrid intestines. Polyclonal heparan sulfate antibodies were produced by immunizing rabbits with HSPG purified from the Engelbreth-Holm-Swarm mouse tumor; these antibodies stained rat intestinal basement membranes. A monoclonal antibody (mAb 4C1) produced against lens capsule of 11-d-old chick embryo reacted with embryonic or adult chick basement membranes, but did not stain that of rat tissues. Immunoprecipitation experiments indicated that mAb 4C1 recognized the chicken basement membrane HSPG. Immunofluorescent staining with these antibodies allowed us to demonstrate that distribution of HSPG at the epithelial-mesenchymal interface varied with the stages of intestinal development, suggesting that remodeling of this proteoglycan is essential for regulating cell behavior during morphogenesis. The immunofluorescence pattern obtained with the two species-specific HSPG antibodies in rat/chick epithelial/mesenchymal hybrid intestines developed as grafts (into the coelomic cavity of chick embryos or under the kidney capsule of adult mice) led to the conclusion that HSPG molecules located in the basement membrane of the developing intestine were produced exclusively by the epithelial cells. These data emphasize the notion already gained from previous studies, in which type IV collagen has been shown to be produced by mesenchymal cells (Simon-Assmann, P., F. Bouziges, C. Arnold, K. Haffen, and M. Kedinger. 1988. Development (Camb.). 102:339-347), that epithelial-mesenchymal interactions play an important role in the formation of a complete basement membrane.


1988 ◽  
Vol 106 (4) ◽  
pp. 1321-1329 ◽  
Author(s):  
M Bronner-Fraser ◽  
T Lallier

INO (inhibitor of neurite outgrowth) is a monoclonal antibody that blocks axon outgrowth, presumably by functionally blocking a laminin-heparan sulfate proteoglycan complex (Chiu, A. Y., W. D. Matthew, and P. H. Patterson. 1986. J. Cell Biol. 103: 1382-1398). Here the effect of this antibody on avian neural crest cells was examined by microinjecting INO onto the pathways of cranial neural crest migration. After injection lateral to the mesencephalic neural tube, the antibody had a primarily unilateral distribution. INO binding was observed in the basal laminae surrounding the neural tube, ectoderm, and endoderm, as well as within the cranial mesenchyme on the injected side of the embryo. This staining pattern was indistinguishable from those observed with antibodies against laminin or heparan sulfate proteoglycan. The injected antibody remained detectable for 18 h after injection, with the intensity of immuno-reactivity decreasing with time. Embryos ranging from the neural fold stage to the 9-somite stage were injected with INO and subsequently allowed to survive for up to 1 d after injection. These embryos demonstrated severe abnormalities in cranial neural crest migration. The predominant defects were ectopic neural crest cells external to the neural tube, neural crest cells within the lumen of the neural tube, and neural tube deformities. In contrast, embryos injected with antibodies against laminin or heparan sulfate proteoglycan were unaffected. When embryos with ten or more somites were injected with INO, no effects were noted, suggesting that embryos are sensitive for only a limited time during their development. Immunoprecipitation of the INO antigen from 2-d chicken embryos revealed a 200-kD band characteristic of laminin and two broad smears between 180 and 85 kD, which were resolved into several bands at lower molecular mass after heparinase digestion. These results indicate that INO precipitates both laminin and proteoglycans bearing heparan sulfate residues. Thus, microinjection of INO causes functional blockage of a laminin-heparan sulfate proteoglycan complex, resulting in abnormal cranial neural crest migration. This is the first evidence that a laminin-heparan sulfate proteoglycan complex is involved in aspects of neural crest migration in vivo.


2020 ◽  
Vol 17 ◽  
pp. 1139-1154 ◽  
Author(s):  
Marti Cabanes-Creus ◽  
Adrian Westhaus ◽  
Renina Gale Navarro ◽  
Grober Baltazar ◽  
Erhua Zhu ◽  
...  

1991 ◽  
Vol 113 (5) ◽  
pp. 1231-1241 ◽  
Author(s):  
C J Soroka ◽  
M G Farquhar

A novel heparan sulfate proteoglycan (HSPG) present in the extracellular matrix of rat liver has been partially characterized. Proteoglycans were purified from a high salt extract of total microsomes from rat liver and found to consist predominantly (approximately 90%) of HSPG. A polyclonal antiserum raised against this fraction specifically recognized HSPG by immunoprecipitation and immunoblotting. The intact, fully glycosylated HSPG migrated as a broad smear (150-300 kD) by SDS-PAGE, but after deglycosylation with trifluoromethanesulfonic acid only a single approximately 40-kD band was seen. By immunocytochemistry this HSPG was localized in the perisinusoidal space of Disse associated with irregular clumps of basement membrane-like extracellular matrix material, some of which was closely associated with the hepatocyte sinusoidal cell surface. It was also localized in biosynthetic compartments (rough ER and Golgi cisternae) of hepatocytes, suggesting that this HSPG is synthesized and deposited in the space of Disse by the hepatocyte. The anti-liver HSPG IgG also stained basement membranes of hepatic blood vessels and bile ducts as well as those of kidney and several other organs (heart, pancreas, and intestine). An antibody that recognizes the basement membrane HSPG found in the rat glomerular basement membrane did not precipitate the 150-300-kD rat liver HSPG. We conclude that the liver sinusoidal space of Disse contains a novel population of HSPG that differs in its overall size, its distribution and in the size of its core protein from other HSPG (i.e., membrane-intercalated HSPG) previously described in rat liver. It also differs in its core protein size from HSPG purified from other extracellular matrix sources. This population of HSPG appears to be a member of the basement membrane HSPG family.


1988 ◽  
Vol 106 (6) ◽  
pp. 2203-2210 ◽  
Author(s):  
M Kato ◽  
Y Koike ◽  
S Suzuki ◽  
K Kimata

The Engelbreth-Holm-Swarm mouse tumor has been found to produce at least two molecular species of heparan sulfate proteoglycan, a low density one (LD) and a high density one, which differ not only in core proteins but also in glycosaminoglycan structures (Kato, M., Y. Koike, Y. Ito, S. Suzuki, and K. Kimata. 1987. J. Biol. Chem. 262:7180-7188). With aim at investigating their distribution and possible functions in tissues, monoclonal antibodies were produced. Hybridomas obtained by fusion of NS-1 mouse myeloma cells with spleen cells from the rat immunized with a mixture of these proteoglycans were selected by their ability to react with the antigen. Two of them secreted monoclonal antibodies (IgG2a), designated HK-84 and HK-102, that recognize specifically the core protein moiety of LD. Immunofluorescent staining of various tissues (skeletal muscle, cardiac muscle, lung, brain, and kidney) with these monoclonal antibodies has demonstrated that the antigen molecules were present in all basement membranes of these tissues. SDS-PAGE of heparitinase-treated proteoglycan fractions prepared from these tissues and subsequent immunoblotting using these monoclonal antibodies have confirmed that the antigen molecule was LD, and further suggested that there was a tissue-specific variation in the core molecular size. Based on these results, we propose that LD may be an essential component in all basement membranes.


1995 ◽  
Vol 43 (3) ◽  
pp. 293-297
Author(s):  
S Inoue

The presence of lipids in the basement membrane of the mouse kidney tubules was examined by histochemical staining with malachite green. Pieces of mouse kidney cortex were immersed in a fixative containing 3% glutaraldehyde and 0.1% malachite green in 0.067 M sodium cacodylate buffer, pH 6.8, for 18 hr at 4 degrees C. Control tissue was fixed in the same way except that no malachite green was added to the fixative. The tissue pieces were cryoprotected, frozen in Freon 22, and subjected to freeze-substitution in dry acetone containing 1% OsO4. Thin sections of Epon-embedded specimens were observed by electron microscopy at first without uranyl-lead counterstaining. The basement membrane of mouse kidney tubules was positively stained in a pattern composed of an irregular assembly of 5-8-nm wide strands. The nature of these malachite green-positive strands was further examined by counterstaining thin sections with uranyl-lead, and they were identified as 4.5-5-nm wide ribbon-like "double tracks" previously characterized as the form taken by heparan sulfate proteoglycan in basement membranes. It is concluded that lipids are present in the basement membrane of mouse kidney tubules in association with heparan sulfate proteoglycan.


1989 ◽  
Vol 108 (5) ◽  
pp. 1873-1890 ◽  
Author(s):  
C L Gatchalian ◽  
M Schachner ◽  
J R Sanes

Four adhesive molecules, tenascin(J1), N-CAM, fibronectin, and a heparan sulfate proteoglycan, accumulate in interstitial spaces near synaptic sites after denervation of rat skeletal muscle (Sanes, J. R., M. Schachner, and J. Covault. 1986. J. Cell Biol. 102:420-431). We have now asked which cells synthesize these molecules, and how this synthesis is regulated. Electron microscopy revealed that mononucleated cells selectively accumulate in perisynaptic interstitial spaces beginning 2 d after denervation. These cells were identified as fibroblasts by ultrastructural and immunohistochemical criteria; [3H]thymidine autoradiography revealed that their accumulation results from local proliferation. Electron microscopic immunohistochemistry demonstrated that N-CAM is associated with the surface of the fibroblasts, while tenascin(J1) is associated with collagen fibers that abut fibroblasts. Using immunofluorescence and immunoprecipitation methods, we found that fibroblasts isolated from perisynaptic regions of denervated muscle synthesize N-CAM, tenascin(J1), fibronectin, and a heparan sulfate proteoglycan in vitro. Thus, fibroblasts that selectively proliferate in interstitial spaces near synaptic sites are likely to be the cellular source of the interstitial deposits of adhesive molecules in denervated muscle. To elucidate factors that might regulate the accumulation of these molecules in vivo, we analyzed the expression of tenascin(J1) and fibronectin by cultured fibroblasts. Fibroblasts from synapse-free regions of denervated muscle, as well as skin, lung, and 3T3 fibroblasts accumulate high levels of tenascin(J1) and fibronectin in culture, showing that perisynaptic fibroblasts are not unique in this regard. However, when they are first placed in culture, fibroblasts from denervated muscle bear more tenascin(J1) than fibroblasts from innervated muscle, indicating that expression of this molecule by fibroblasts is regulated by the muscle's state of innervation; this difference is no longer apparent after a few days in culture. In 3T3 cells, accumulation of tenascin(J1) is high in proliferating cultures, depressed in confluent cultures, and reactivated in cells stimulated to proliferate by replating at low density or by wounding a confluent monolayer. Thus, synthesis of tenascin(J1) is regulated in parallel with mitotic activity. In contrast, levels of fibronectin, which increase less dramatically after denervation in vivo, are similar in fibroblasts from innervated and denervated muscle and in proliferating and quiescent 3T3 cells.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document