scholarly journals Ypt32 recruits the Sec4p guanine nucleotide exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast

2002 ◽  
Vol 157 (6) ◽  
pp. 1005-1016 ◽  
Author(s):  
Darinel Ortiz ◽  
Martina Medkova ◽  
Christiane Walch-Solimena ◽  
Peter Novick

SEC2 is an essential gene required for polarized growth of the yeast Saccharomyces cerevisiae. It encodes a protein of 759 amino acids that functions as a guanine nucleotide exchange factor for the small GTPase Sec4p, a regulator of Golgi to plasma membrane transport. Activation of Sec4p by Sec2p is needed for polarized transport of vesicles to exocytic sites. Temperature-sensitive (ts) mutations in sec2 and sec4 result in a tight block in secretion and the accumulation of secretory vesicles randomly distributed in the cell. The proper localization of Sec2p to secretory vesicles is essential for its function and is largely independent of Sec4p. Although the ts mutation sec2-78 does not affect nucleotide exchange activity, the protein is mislocalized. Here we present evidence that Ypt31/32p, members of Rab family of GTPases, regulate Sec2p function. First, YPT31/YPT32 suppress the sec2-78 mutation. Second, overexpression of Ypt31/32p restores localization of Sec2-78p. Third, Ypt32p and Sec2p interact biochemically, but Sec2p has no exchange activity on Ypt32p. We propose that Ypt32p and Sec4p act as part of a signaling cascade in which Ypt32p recruits Sec2p to secretory vesicles; once on the vesicle, Sec2p activates Sec4p, enabling the polarized transport of vesicles to the plasma membrane.

2005 ◽  
Vol 281 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Yu Li ◽  
Sirisha Asuri ◽  
John F. Rebhun ◽  
Ariel F. Castro ◽  
Nivanka C. Paranavitana ◽  
...  

2000 ◽  
Vol 275 (21) ◽  
pp. 15637-15644 ◽  
Author(s):  
Anne-Sophie Caumont ◽  
Nicolas Vitale ◽  
Marc Gensse ◽  
Marie-Christine Galas ◽  
James E. Casanova ◽  
...  

2014 ◽  
Vol 112 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Juanfei Wang ◽  
Jinqi Ren ◽  
Bin Wu ◽  
Shanshan Feng ◽  
Guoping Cai ◽  
...  

Exocytosis is tightly regulated in many cellular processes, from neurite expansion to tumor proliferation. Rab8, a member of the Rab family of small GTPases, plays an important role in membrane trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rabin8 is a guanine nucleotide exchange factor (GEF) and major activator of Rab8. Investigating how Rabin8 is activated in cells is thus pivotal to the understanding of the regulation of exocytosis. Here we show that phosphorylation serves as an important mechanism for Rabin8 activation. We identified Rabin8 as a direct phospho-substrate of ERK1/2 in response to EGF signaling. At the molecular level, ERK phosphorylation relieves the autoinhibition of Rabin8, thus promoting its GEF activity. We further demonstrate that blocking ERK1/2-mediated phosphorylation of Rabin8 inhibits transferrin recycling to the plasma membrane. Together, our results suggest that ERK1/2 activate Rabin8 to regulate vesicular trafficking to the plasma membrane in response to extracellular signaling.


Sign in / Sign up

Export Citation Format

Share Document