membrane localization
Recently Published Documents


TOTAL DOCUMENTS

706
(FIVE YEARS 96)

H-INDEX

74
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Loes M Stevers ◽  
Madita Wolter ◽  
Graeme Carlile ◽  
Dwight Macdonald ◽  
Luc Richard ◽  
...  

Impaired activity of the chloride channel CFTR is the cause of cystic fibrosis. 14-3-3 proteins have been shown to stabilize CFTR and increase its biogenesis and activity. Here, we report the identification and mechanism of action of a macrocycle stabilizing the 14-3-3/CFTR complex, a first-in-class molecular glue. This molecule rescues plasma membrane localization and chloride transport of F508del-CFTR and works additively with the CFTR pharmacological chaperone corrector lumacaftor (VX-809).


2021 ◽  
Vol 22 (24) ◽  
pp. 13193
Author(s):  
Malak Haidar ◽  
Patrick Jacquemin

KRAS is one of the most studied oncogenes. It is well known that KRAS undergoes post-translational modifications at its C-terminal end. These modifications are essential for its membrane location and activity. Despite significant efforts made in the past three decades to target the mechanisms involved in its membrane localization, no therapies have been approved and taken into the clinic. However, many studies have recently reintroduced interest in the development of KRAS inhibitors, either by directly targeting KRAS or indirectly through the inhibition of critical steps involved in post-translational KRAS modifications. In this review, we summarize the approaches that have been applied over the years to inhibit the membrane localization of KRAS in cancer and propose a new anti-KRAS strategy that could be used in clinic.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Chen Braun ◽  
Xiaorong Xu Parks ◽  
Haani Qudsi ◽  
Coeli M. B. Lopes

AbstractPlasma membrane phosphatidylinositol 4-phosphate (PI4P) is a precursor of PI(4,5)P2, an important regulator of a large number of ion channels. Although the role of the phospholipid PI(4,5)P2 in stabilizing ion channel function is well established, little is known about the role of phospholipids in channel membrane localization and specifically the role of PI4P in channel function and localization. The phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P. Our data show that inhibition of PI4K and prolonged decrease of levels of plasma membrane PI4P lead to a decrease in the KCNQ1/KCNE1 channel membrane localization and function. In addition, we show that mutations linked to Long QT syndrome that affect channel interactions with phospholipids lead to a decrease in membrane expression. We show that expression of a LQT1-associated C-terminal deletion mutant abolishes PI4Kinase-mediated decrease in membrane expression and rescues membrane expression for phospholipid-targeting mutations. Our results indicate a novel role for PI4P on ion channel regulation. Our data suggest that decreased membrane PI4P availability to the channel, either due to inhibition of PI4K or as consequence of mutations, dramatically inhibits KCNQ1/KCNE1 channel membrane localization and current. Our results may have implications to regulation of other PI4P binding channels.


2021 ◽  
Vol 22 (23) ◽  
pp. 12658
Author(s):  
Yosuke Nakazawa ◽  
Rosica S. Petrova ◽  
Yuki Sugiyama ◽  
Noriaki Nagai ◽  
Hiroomi Tamura ◽  
...  

Lens water transport generates a hydrostatic pressure gradient that is regulated by a dual-feedback system that utilizes the mechanosensitive transient receptor potential vanilloid (TRPV) channels, TRPV1 and TRPV4, to sense changes in mechanical tension and extracellular osmolarity. Here, we investigate whether the modulation of TRPV1 or TRPV4 activity dynamically affects their membrane trafficking. Mouse lenses were incubated in either pilocarpine or tropicamide to alter zonular tension, exposed to osmotic stress, or the TRPV1 and TRPV4 activators capsaicin andGSK1016790A (GSK101), and the effect on the TRPV1 and TRPV4 membrane trafficking in peripheral fiber cells visualized using confocal microscopy. Decreases in zonular tension caused the removal of TRPV4 from the membrane of peripheral fiber cells. Hypotonic challenge had no effect on TRPV1, but increased the membrane localization of TRPV4. Hypertonic challenge caused the insertion of TRPV1 and the removal of TRPV4 from the membranes of peripheral fiber cells. Capsaicin caused an increase in TRPV4 membrane localization, but had no effect on TRPV1; while GSK101 decreased the membrane localization of TRPV4 and increased the membrane localization of TRPV1. These reciprocal changes in TRPV1/4 membrane localization are consistent with the channels acting as mechanosensitive transducers of a dual-feedback pathway that regulates lens water transport.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3906
Author(s):  
Michael Mazzulla ◽  
Nathan Hodson ◽  
Matthew Lees ◽  
Paula J. Scaife ◽  
Kenneth Smith ◽  
...  

The influx of essential amino acids into skeletal muscle is primarily mediated by the large neutral amino acid transporter 1 (LAT1), which is dependent on the glutamine gradient generated by the sodium-dependent neutral amino acid transporter 2 (SNAT2). The protein expression and membrane localization of LAT1 may be influenced by amino acid ingestion and/or resistance exercise, although its acute influence on dietary amino acid incorporation into skeletal muscle protein has not been investigated. In a group design, healthy males consumed a mixed carbohydrate (0.75 g·kg−1) crystalline amino acid (0.25 g·kg−1) beverage enriched to 25% and 30% with LAT1 substrates L-[1-13C]leucine (LEU) and L-[ring-2H5]phenylalanine (PHE), respectively, at rest (FED: n = 7, 23 ± 5 y, 77 ± 4 kg) or after a bout of resistance exercise (EXFED: n = 7, 22 ± 2 y, 78 ± 11 kg). Postprandial muscle biopsies were collected at 0, 120, and 300 min to measure transporter protein expression (immunoblot), LAT1 membrane localization (immunofluorescence), and dietary amino acid incorporation into myofibrillar protein (ΔLEU and ΔPHE). Basal LAT1 and SNAT2 protein contents were correlated with each other (r = 0.55, p = 0.04) but their expression did not change across time in FED or EXFED (all, p > 0.05). Membrane localization of LAT1 did not change across time in FED or EXFED whether measured as outer 1.5 µm intensity or membrane-to-fiber ratio (all, p > 0.05). Basal SNAT2 protein expression was not correlated with ΔLEU or ΔPHE (all, p ≥ 0.05) whereas basal LAT1 expression was negatively correlated with ΔPHE in FED (r = −0.76, p = 0.04) and EXFED (r = −0.81, p = 0.03) but not ΔLEU (p > 0.05). Basal LAT1 membrane localization was not correlated with ΔLEU or ΔPHE (all, p > 0.05). Our results suggest that LAT1/SNAT2 protein expression and LAT1 membrane localization are not influenced by acute anabolic stimuli and do not positively influence the incorporation of dietary amino acids for de novo myofibrillar protein synthesis in healthy young males.


2021 ◽  
Author(s):  
Ian McCabe ◽  
Huanqing Zhang ◽  
Jonathan A. Cooper ◽  
David L. Turner ◽  
Anne B. Vojtek

Membrane localization of Ras proteins is necessary for their biological functions and oncogenic activity. We report here on the identification of Brain I3 Binding Protein (BRI3BP) as a novel binding partner for Ras. We show that K-Ras4B plasma membrane localization and biological function are reduced in the absence of BRI3BP. BRI3BP interacts with K-Ras4B and K-Ras4A and our data suggest that BRI3BP operates within the recycling endosomal compartment to regulate K-Ras localization to the plasma membrane. This study uncovers a new regulatory protein for Ras membrane localization.


Biology Open ◽  
2021 ◽  
Vol 10 (9) ◽  
Author(s):  
Sayaka Fujisawa ◽  
Hantian Qiu ◽  
Shohei Nozaki ◽  
Shuhei Chiba ◽  
Yohei Katoh ◽  
...  

ABSTRACT INPP5E, a phosphoinositide 5-phosphatase, localizes on the ciliary membrane via its C-terminal prenyl moiety, and maintains the distinct ciliary phosphoinositide composition. The ARL3 GTPase contributes to the ciliary membrane localization of INPP5E by stimulating the release of PDE6D bound to prenylated INPP5E. Another GTPase, ARL13B, which is localized on the ciliary membrane, contributes to the ciliary membrane retention of INPP5E by directly binding to its ciliary targeting sequence. However, as ARL13B was shown to act as a guanine nucleotide exchange factor (GEF) for ARL3, it is also possible that ARL13B indirectly mediates the ciliary INPP5E localization via activating ARL3. We here show that INPP5E is delocalized from cilia in both ARL3-knockout (KO) and ARL13B-KO cells. However, some of the abnormal phenotypes were different between these KO cells, while others were found to be common, indicating the parallel roles of ARL3 and ARL13B, at least concerning some cellular functions. For several variants of ARL13B, their ability to interact with INPP5E, rather than their ability as an ARL3-GEF, was associated with whether they could rescue the ciliary localization of INPP5E in ARL13B-KO cells. These observations together indicate that ARL13B determines the ciliary localization of INPP5E, mainly by its direct binding to INPP5E.


2021 ◽  
Vol 22 (17) ◽  
pp. 9525
Author(s):  
Veronika Palenikova ◽  
Michaela Frolikova ◽  
Eliska Valaskova ◽  
Pavla Postlerova ◽  
Katerina Komrskova

Integrins are transmembrane receptors that facilitate cell adhesion and cell–extracellular matrix communication. They are involved in the sperm maturation including capacitation and gamete interaction, resulting in successful fertilization. αV integrin belongs to the integrin glycoprotein superfamily, and it is indispensable for physiological spermiogenesis and testosterone production. We targeted the gene and protein expression of the αV integrin subunit and described its membrane localization in sperm. Firstly, in mouse, we traced αV integrin gene expression during spermatogenesis in testicular fraction separated by elutriation, and we detected gene activity in spermatogonia, spermatocytes, and round spermatids. Secondly, we specified αV integrin membrane localization in acrosome-intact and acrosome-reacted sperm and compared its pattern between mouse, pig, and human. Using immunodetection and structured illumination microscopy (SIM), the αV integrin localization was confined to the plasma membrane covering the acrosomal cap area and also to the inner acrosomal membrane of acrosome-intact sperm of all selected species. During the acrosome reaction, which was induced on capacitated sperm, the αV integrin relocated and was detected over the whole sperm head. Knowledge of the integrin pattern in mature sperm prepares the ground for further investigation into the pathologies and related fertility issues in human medicine and veterinary science.


Sign in / Sign up

Export Citation Format

Share Document