egf signaling
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 37)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ronghui Lou ◽  
Weizhen Liu ◽  
Rongjie Li ◽  
Shanshan Li ◽  
Xuming He ◽  
...  

AbstractPhosphoproteomics integrating data-independent acquisition (DIA) enables deep phosphoproteome profiling with improved quantification reproducibility and accuracy compared to data-dependent acquisition (DDA)-based phosphoproteomics. DIA data mining heavily relies on a spectral library that in most cases is built on DDA analysis of the same sample. Construction of this project-specific DDA library impairs the analytical throughput, limits the proteome coverage, and increases the sample size for DIA phosphoproteomics. Herein we introduce a deep neural network, DeepPhospho, which conceptually differs from previous deep learning models to achieve accurate predictions of LC-MS/MS data for phosphopeptides. By leveraging in silico libraries generated by DeepPhospho, we establish a DIA workflow for phosphoproteome profiling which involves DIA data acquisition and data mining with DeepPhospho predicted libraries, thus circumventing the need of DDA library construction. Our DeepPhospho-empowered workflow substantially expands the phosphoproteome coverage while maintaining high quantification performance, which leads to the discovery of more signaling pathways and regulated kinases in an EGF signaling study than the DDA library-based approach. DeepPhospho is provided as a web server as well as an offline app to facilitate user access to model training, predictions and library generation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mirae Kim ◽  
Seon-Ung Hwang ◽  
Junchul David Yoon ◽  
Joohyeong Lee ◽  
Eunhye Kim ◽  
...  

Neurotrophin-4 (NT-4) is a neurotrophic factor that plays an important role in follicular development and oocyte maturation. However, it is not yet known whether NT-4 is related to oocyte maturation and follicular development in pigs. This study aims to investigate the effects of NT-4 supplementation during in vitro maturation (IVM) of porcine oocytes and subsequent embryonic development after parthenogenetic activation (PA). First, NT-4 and its receptors (TrkB and p75NTR) were identified through fluorescent immunohistochemistry in porcine ovaries. NT-4 was mainly expressed in theca and granulosa cells; phospho-TrkB and total TrkB were expressed in theca cells, granulosa cells, and oocytes; p75NTR was expressed in all follicular cells. During IVM, the defined maturation medium was supplemented with various concentrations of NT-4 (0, 1, 10, and 100 ng/mL). After IVM, the nuclear maturation rate was significantly higher in the 10 and 100 ng/mL NT-4 treated groups than in the control. There was no significant difference in the intracellular reactive oxygen species levels in any group after IVM, but the 1 and 10 ng/mL NT-4 treatment groups showed a significant increase in the intracellular glutathione levels compared to the control. In matured cumulus cells, the 10 ng/mL NT-4 treatment group showed significantly increased cumulus expansion-related genes and epidermal growth factor (EGF) signaling pathway-related genes. In matured oocytes, the 10 ng/mL treatment group showed significantly increased expression of cell proliferation-related genes, antioxidant-related genes, and EGF signaling pathway-related genes. We also investigated the subsequent embryonic developmental competence of PA embryos. After PA, the cleavage rates significantly increased in the 10 and 100 ng/mL NT-4 treatment groups. Although there was no significant difference in the total cell number of blastocysts, only the 10 ng/mL NT-4 treatment group showed a higher blastocyst formation rate than the control group. Our findings suggest that supplementation with the 10 ng/mL NT-4 can enhance porcine oocyte maturation by interacting with the EGF receptor signaling pathway. In addition, we demonstrated for the first time that NT-4 is not only required for porcine follicular development, but also has beneficial effects on oocyte maturation and developmental competence of PA embryos.


2021 ◽  
Author(s):  
Saara-Anne Azizi ◽  
Tian Qiu ◽  
Noah Brookes ◽  
Bryan C Dickinson

The extracellular signal-regulated kinases (ERK1/2) are key effector proteins of the mitogen activated protein kinase pathway, choreographing essential processes of cellular physiology. Critical in regulating these regulators are a patchwork of mechanisms, including post-translational modifications (PTMs) such as MEK-mediated phosphorylation. Here, we discover that ERK1/2 are subject to S-palmitoylation, a reversible lipid modification of cysteine residues, at C271/C254. Moreover, the levels of ERK1/2 S-acylation are modulated by epidermal growth factor (EGF) signaling, mirroring its phosphorylation dynamics, and palmitoylation-deficient ERK2 displays altered phosphorylation patterns at key sites. We find that chemical inhibition of either lipid addition or removal significantly alters ERK1/2's EGF-triggered transcriptional program. We also identify a subset of "writer" protein acyl transferases (PATs) and an "eraser" acyl protein thioesterase (APT) that drive ERK1/2's cycle of palmitoylation and depalmitoylation. Finally, we examine ERK1/2 S-acylation in a mouse model of metabolic syndrome, correlating changes in its lipidation levels with alterations in writer/eraser expression and solidifying the link between ERK1/2 activity, ERK1/2 lipidation, and organismal health. This study not only presents a previously undescribed mode of ERK1/2 regulation and a node to modulate MAPK pathway signaling in pathophysiological conditions, it also offers insight into the role of dynamic S29 palmitoylation in cell signaling more generally.


2021 ◽  
Author(s):  
Xinyu Liu ◽  
Lesi Xie ◽  
Jiao Li ◽  
Conghui Li ◽  
Kang Zheng ◽  
...  

Abstract Background The conversion of astrocytes activated by nerve injuries to oligodendrocytes is not only beneficial to axonal remyelination, but also helpful for reversal of glial scar. Recent studies have shown that Sox10 transcription factor can achieve this transdifferentiation process in collaboration with some unknown factors in the pathological microenvironment. The extracellular factors underlying the cell fate switching are not known. Methods Astrocytes were obtained from mouse cortical dissociation culture and purified by differential adherent properties. The lineage conversion of astrocytes into oligodendrocyte lineage cells was carried out by Sox10-expressing virus infection both in vitro and in vivo, meanwhile, epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) inhibitor Gefitinib were adopted to investigate the function of EGF signaling in this fate transition process. Pharmacological inhibition analyses were performed to examine the pathway connecting the EGF with the expression of oligodendrogenic genes and cell fate transdifferentiation. Results EGF treatment facilitated the Sox10-induced transformation of astrocytes to O4+ induced oligodendrocyte precursor cells (iOPCs) in vitro. The transdifferentiation of astrocytes to iOPCs went through two distinct but interconnected processes: (1) dedifferentiation of astrocytes to astrocyte precursor cells (APCs); (2) transformation of APCs to iOPCs, EGF signaling was involved in both processes. And EGF triggered astrocytes to express oligodendrogenic genes Olig1 and Olig2 by activating extracellular signal-regulated kinase 1 and 2 (Erk1/2) pathway. In addition, we discovered that EGF can enhance astrocyte transdifferentiation in injured spinal cord tissues. Conclusions These findings provide strong evidence that EGF facilitates the transdifferentiation of astrocytes to oligodendroglias, and suggest that targeting the EGF-EGFR-Erk1/2 signaling axis may represent a novel therapeutic strategy for myelin repair in injured central nervous system (CNS) tissues.


Author(s):  
Catalina Ruiz-Cañada ◽  
Ángel Bernabé-García ◽  
Sergio Liarte ◽  
Mónica Rodríguez-Valiente ◽  
Francisco José Nicolás

The application of amniotic membrane (AM) on chronic wounds has proven very effective at resetting wound healing, particularly in re-epithelialization. Historically, several aspects of AM effect on wound healing have been evaluated using cell models. In keratinocytes, the presence of AM induces the activation of mitogen-activated protein (MAP) kinase and c-Jun N-terminal kinase (JNK) pathways, together with the high expression of c-Jun, an important transcription factor for the progression of the re-epithelialization tongue. In general, the levels of transforming growth factor (TGF)-β present in a wound are critical for the process of wound healing; they are elevated during the inflammation phase and remain high in some chronic wounds. Interestingly, the presence of AM, through epidermal growth factor (EGF) signaling, produces a fine-tuning of the TGF-β signaling pathway that re-conducts the stalled process of wound healing. However, the complete suppression of TGF-β signaling has proven negative for the AM stimulation of migration, suggesting that a minimal amount of TGF-β signaling is required for proper wound healing. Regarding migration machinery, AM contributes to the dynamics of focal adhesions, producing a high turnover and thus speeding up remodeling. This is clear because proteins, such as Paxillin, are activated upon treatment with AM. On top of this, AM also produces changes in the expression of Paxillin. Although we have made great progress in understanding the effects of AM on chronic wound healing, a long way is still ahead of us to fully comprehend its effects.


Author(s):  
Monica Dugăeșescu ◽  
Florentina Mușat ◽  
Octavian Andronic

Background: Epidermal growth factor (EGF) is a stimulating protein for cell proliferation and differentiation. An amplification of its signaling pathway has been frequently reported in numerous malignant tumors. Specific polymorphisms of the genes encoding proteins involved in this cellular pathway may constitute risk factors for carcinogenesis. The aim of this study was to identify the most relevant polymorphisms of EGF and their signaling pathways and their relation to carcinogenesis. Methods: The study included 40 full-text articles published between January 2010 and May 2020, extracted from PubMed, Scopus, Web of Science, and Science Direct databases in May 2020, using the following keywords: EGF OR epidermal growth factor AND polymorphism AND cancer OR neoplasia OR tumor. Results: We identified relevant polymorphisms of the EGF signaling pathway that were involved in the development and progression of hepatocellular carcinoma, esophageal cancer, gastric cancer, colorectal cancer, glioma, lung cancer, breast cancer, cervical cancer, and head and neck cancer. Rs4444903 variants have been widely studied and the association with numerous tumors has been confirmed by multiple studies. Other frequently investigated polymorphisms are –191C/A and –216G>T. Conclusion: The polymorphisms of EGF signaling pathway have been widely studied in connection to various malignancies. Some predisposing variants are common in different forms of cancer. These polymorphisms might be general risk factors for carcinogenesis.


2021 ◽  
Vol 7 (27) ◽  
pp. eabf1068
Author(s):  
Qian Wang ◽  
Chenqi Tao ◽  
Abdul Hannan ◽  
Sungtae Yoon ◽  
Xuanyu Min ◽  
...  

The patterning of epithelial buds is determined by the underlying signaling network. Here, we study the cross-talk between phosphoinositide 3-kinase (PI3K) and Ras signaling during lacrimal gland budding morphogenesis. Our results show that PI3K is activated by both the p85-mediated insulin-like growth factor (IGF) and Ras-mediated fibroblast growth factor (FGF) signaling. On the other hand, PI3K also promotes extracellular signal–regulated kinase (ERK) signaling via a direct interaction with Ras. Both PI3K and ERK are upstream regulators of mammalian target of rapamycin (mTOR), and, together, they prevent expansion of epidermal growth factor (EGF) receptor expression from the lacrimal gland stalk to the bud region. We further show that this suppression of EGF signaling is necessary for induction of lacrimal gland buds. These results reveal that the interplay between PI3K, mitogen-activated protein kinase, and mTOR mediates the cross-talk among FGF, IGF, and EGF signaling in support of lacrimal gland development.


2021 ◽  
Author(s):  
Wenqing Shui ◽  
Ronghui Lou ◽  
Weizhen Liu ◽  
Rongjie Li ◽  
Shanshan Li ◽  
...  

Abstract Phosphoproteomics integrating data-independent acquisition (DIA) has enabled deep phosphoproteome profiling with improved quantification reproducibility and accuracy compared to data-dependent acquisition (DDA)-based phosphoproteomics. DIA data mining heavily relies on a spectral library that in most cases is built on DDA analysis of the same sample. Construction of this project-specific DDA library impairs the analytical throughput, limits the proteome coverage, and increases the sample size for DIA phosphoproteomics. Herein we introduce a novel deep neural network, DeepPhospho, which conceptually differs from previous deep learning models to achieve accurate predictions of LC-MS/MS data for phosphopeptides. By leveraging in silico libraries generated by DeepPhospho, we established a new DIA workflow for phosphoproteome profiling which involves DIA data acquisition and data mining with DeepPhospho predicted libraries, thus circumventing the need of DDA library construction. Our DeepPhospho-empowered workflow substantially expanded the phosphoproteome coverage while maintaining high quantification performance, which led to the discovery of more signaling pathways and regulated kinases in an EGF signaling study than the DDA library-based approach. DeepPhospho is provided as a web server to facilitate user access to predictions and library generation.


2021 ◽  
Vol 41 (4) ◽  
pp. 1821-1830
Author(s):  
HIROSHI HOTTA ◽  
KAZUNORI HAMAMURA ◽  
HIDENOBU SHIBUYA ◽  
YUHSUKE OHMI ◽  
KEIKO FURUKAWA ◽  
...  

Gene ◽  
2021 ◽  
Vol 771 ◽  
pp. 145343
Author(s):  
Hao Zhang ◽  
Xiaoqiao Fu ◽  
Yue Ao ◽  
Miaomiao Nan ◽  
Ziyu Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document