scholarly journals cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane

2012 ◽  
Vol 109 (10) ◽  
pp. 3814-3819 ◽  
Author(s):  
S. V. Consonni ◽  
M. Gloerich ◽  
E. Spanjaard ◽  
J. L. Bos
2005 ◽  
Vol 281 (5) ◽  
pp. 2506-2514 ◽  
Author(s):  
Yu Li ◽  
Sirisha Asuri ◽  
John F. Rebhun ◽  
Ariel F. Castro ◽  
Nivanka C. Paranavitana ◽  
...  

2000 ◽  
Vol 275 (21) ◽  
pp. 15637-15644 ◽  
Author(s):  
Anne-Sophie Caumont ◽  
Nicolas Vitale ◽  
Marc Gensse ◽  
Marie-Christine Galas ◽  
James E. Casanova ◽  
...  

2014 ◽  
Vol 112 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Juanfei Wang ◽  
Jinqi Ren ◽  
Bin Wu ◽  
Shanshan Feng ◽  
Guoping Cai ◽  
...  

Exocytosis is tightly regulated in many cellular processes, from neurite expansion to tumor proliferation. Rab8, a member of the Rab family of small GTPases, plays an important role in membrane trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rabin8 is a guanine nucleotide exchange factor (GEF) and major activator of Rab8. Investigating how Rabin8 is activated in cells is thus pivotal to the understanding of the regulation of exocytosis. Here we show that phosphorylation serves as an important mechanism for Rabin8 activation. We identified Rabin8 as a direct phospho-substrate of ERK1/2 in response to EGF signaling. At the molecular level, ERK phosphorylation relieves the autoinhibition of Rabin8, thus promoting its GEF activity. We further demonstrate that blocking ERK1/2-mediated phosphorylation of Rabin8 inhibits transferrin recycling to the plasma membrane. Together, our results suggest that ERK1/2 activate Rabin8 to regulate vesicular trafficking to the plasma membrane in response to extracellular signaling.


2002 ◽  
Vol 157 (6) ◽  
pp. 1005-1016 ◽  
Author(s):  
Darinel Ortiz ◽  
Martina Medkova ◽  
Christiane Walch-Solimena ◽  
Peter Novick

SEC2 is an essential gene required for polarized growth of the yeast Saccharomyces cerevisiae. It encodes a protein of 759 amino acids that functions as a guanine nucleotide exchange factor for the small GTPase Sec4p, a regulator of Golgi to plasma membrane transport. Activation of Sec4p by Sec2p is needed for polarized transport of vesicles to exocytic sites. Temperature-sensitive (ts) mutations in sec2 and sec4 result in a tight block in secretion and the accumulation of secretory vesicles randomly distributed in the cell. The proper localization of Sec2p to secretory vesicles is essential for its function and is largely independent of Sec4p. Although the ts mutation sec2-78 does not affect nucleotide exchange activity, the protein is mislocalized. Here we present evidence that Ypt31/32p, members of Rab family of GTPases, regulate Sec2p function. First, YPT31/YPT32 suppress the sec2-78 mutation. Second, overexpression of Ypt31/32p restores localization of Sec2-78p. Third, Ypt32p and Sec2p interact biochemically, but Sec2p has no exchange activity on Ypt32p. We propose that Ypt32p and Sec4p act as part of a signaling cascade in which Ypt32p recruits Sec2p to secretory vesicles; once on the vesicle, Sec2p activates Sec4p, enabling the polarized transport of vesicles to the plasma membrane.


1998 ◽  
Vol 111 (11) ◽  
pp. 1583-1594
Author(s):  
V.L. Katanaev ◽  
M.P. Wymann

In a cell-free system from neutrophil cytosol GTP(γ)S can induce an increase in the number of free filament barbed ends and massive actin polymerisation and cross-linking. GTP(γ)S stimulation was susceptible to an excess of GDP, but not Bordetella pertussis toxin and could not be mimicked by aluminium fluoride, myristoylated GTPgammaS. Gialpha2 or Gbeta1gamma2 subunits of trimeric G proteins. In contrast, RhoGDI and Clostridium difficile toxin B (inactivating Rho family proteins) completely abrogated the effect of GTPgammaS. When recombinant, constitutively activated and GTPgammaS-loaded Rac1, RhoA, or Cdc42 proteins alone or in combination were probed at concentrations >100 times the endogenous, however, they were ineffective. Purified Cdc42/Rac-interactive binding (CRIB) domain of WASP or C3 transferase did not prevent actin polymerisation by GTPgammaS. The action of GTPgammaS was blocked by mM [Mg2+], unless a heat- and trypsin-sensitive component present in neutrophil plasma membrane was added. Liberation of barbed ends seems therefore to be mediated by a toxin B-sensitive cytosolic Rho-family protein, requiring a membrane-associated guanine nucleotide exchange factor (GEF) for its activation by GTPgammaS under physiologic conditions. The inefficiency of various protein kinase and phosphatase inhibitors (staurosporine, genistein, wortmannin, okadaic acid and vanadate) and removal of ATP by apyrase, suggests that phosphate transfer reactions are not required for the downstream propagation of the GTPgammaS signal. Moreover, exogenously added phosphoinositides failed to induce actin polymerisation and a PtdIns(4,5)P2-binding peptide did not interfere with the response to GTPgammaS. The speed and simplicity of the presented assay applicable to protein purification techniques will facilitate the further elucidation of the molecular partners involved in actin polymerisation.


Sign in / Sign up

Export Citation Format

Share Document