scholarly journals Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells

2003 ◽  
Vol 163 (4) ◽  
pp. 767-775 ◽  
Author(s):  
Céline Jousse ◽  
Seiichi Oyadomari ◽  
Isabel Novoa ◽  
Phoebe Lu ◽  
Yuhong Zhang ◽  
...  

Phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) on serine 51 is effected by specific stress-activated protein kinases. eIF2α phosphorylation inhibits translation initiation promoting a cytoprotective gene expression program known as the integrated stress response (ISR). Stress-induced activation of GADD34 feeds back negatively on this pathway by promoting eIF2α dephosphorylation, however, GADD34 mutant cells retain significant eIF2α-directed phosphatase activity. We used a somatic cell genetic approach to identify a gene encoding a novel regulatory subunit of a constitutively active holophosphatase complex that dephosphorylates eIF2α. RNAi of this gene, which we named constitutive repressor of eIF2α phosphorylation (CReP, or PPP1R15B), repressed the constitutive eIF2α-directed phosphatase activity and activated the ISR. CReP RNAi strongly protected mammalian cells against oxidative stress, peroxynitrite stress, and more modestly against accumulation of malfolded proteins in the endoplasmic reticulum. These findings suggest that therapeutic inhibition of eIF2α dephosphorylation by targeting the CReP-protein–phosphatase-1 complex may be used to access the salubrious qualities of the ISR.

2015 ◽  
Vol 35 (16) ◽  
pp. 2761-2770 ◽  
Author(s):  
Jae-Seon So ◽  
Sungyun Cho ◽  
Sang-Hyun Min ◽  
Scot R. Kimball ◽  
Ann-Hwee Lee

The unfolded protein response (UPR) regulates endoplasmic reticulum (ER) homeostasis and protects cells from ER stress. IRE1α is a central regulator of the UPR that activates the transcription factor XBP1s through an unconventional splicing mechanism using its endoribonuclease activity. IRE1α also cleaves certain mRNAs containing XBP1-like secondary structures to promote the degradation of these mRNAs, a process known as regulated IRE1α-dependent decay (RIDD). We show here that the mRNA of CReP/Ppp1r15b, a regulatory subunit of eukaryotic translation initiation factor 2α (eIF2α) phosphatase, is a RIDD substrate. eIF2α plays a central role in the integrated stress response by mediating the translational attenuation to decrease the stress level in the cell. CReP expression was markedly suppressed in XBP1-deficient mice livers due to hyperactivated IRE1α. Decreased CReP expression caused the induction of eIF2α phosphorylation and the attenuation of protein synthesis in XBP1-deficient livers. ER stress also suppressed CReP expression in an IRE1α-dependent manner, which increased eIF2α phosphorylation and consequently attenuated protein synthesis. Taken together, the results of our study reveal a novel function of IRE1α in the regulation of eIF2α phosphorylation and the translational control.


Author(s):  
Wenqing Liu ◽  
Na Li ◽  
Mengfei Zhang ◽  
Ahmed H. Arisha ◽  
Jinlian Hua

: Eukaryotic translation initiation factor 2 subunit 3 and structural gene Y-linked (Eif2s3y) gene, the gene encoding eIF2γ protein, is located on the mouse Y chromosome short arm. The Eif2s3y gene is globally expressed in all tissues and plays an important role in regulating global and gene-specific mRNA translation initiation. During the process of protein translation initiation, Eif2s3x(its homolog) and Eif2s3y encoded eIF2γ perform similar functions. However, it has been noticed that Eif2s3y plays a crucial role in spermatogenesis, including spermatogonia mitosis, meiosis, and spermiogenesis of spermatids, which may account for infertility. In the period of spermatogenesis, the role of Eif2s3x and Eif2s3y are not equivalent. Importance of Eif2s3y has been observed in ESC and implicated in several aspects, including the pluripotency state and the proliferation rate. Here, we discuss the functional significance of Eif2s3y in mouse spermatogenesis and self-renewal of ESCs.


2000 ◽  
Vol 74 (15) ◽  
pp. 7064-7071 ◽  
Author(s):  
Patrice Vende ◽  
Maria Piron ◽  
Nathalie Castagné ◽  
Didier Poncet

ABSTRACT In contrast to the vast majority of cellular proteins, rotavirus proteins are translated from capped but nonpolyadenylated mRNAs. The viral nonstructural protein NSP3 specifically binds the 3′-end consensus sequence of viral mRNAs and interacts with the eukaryotic translation initiation factor eIF4G. Here we show that expression of NSP3 in mammalian cells allows the efficient translation of virus-like mRNA. A synergistic effect between the cap structure and the 3′ end of rotavirus mRNA was observed in NSP3-expressing cells. The enhancement of viral mRNA translation by NSP3 was also observed in a rabbit reticulocyte lysate translation system supplemented with recombinant NSP3. The use of NSP3 mutants indicates that its RNA- and eIF4G-binding domains are both required to enhance the translation of viral mRNA. The results reported here show that NSP3 forms a link between viral mRNA and the cellular translation machinery and hence is a functional analogue of cellular poly(A)-binding protein.


2010 ◽  
Vol 30 (12) ◽  
pp. 2862-2873 ◽  
Author(s):  
Vera Cherkasova ◽  
Hongfang Qiu ◽  
Alan G. Hinnebusch

ABSTRACT Snf1 is the ortholog of mammalian AMP-activated kinase and is responsible for activation of glucose-repressed genes at low glucose levels in budding yeast. We show that Snf1 promotes the formation of phosphorylated α subunit of eukaryotic translation initiation factor 2 (eIF2α-P), a regulator of general and gene-specific translation, by stimulating the function of eIF2α kinase Gcn2 during histidine starvation of glucose-grown cells. Thus, eliminating Snf1 or mutating its activation loop lowers Gcn2 kinase activity, reducing the autophosphorylation of Thr-882 in the Gcn2 activation loop, and decreases eIF2α-P levels in starved cells. Consistently, eliminating Reg1, a negative regulator of Snf1, provokes Snf1-dependent hyperphosphorylation of both Thr-882 and eIF2α. Interestingly, Snf1 also promotes eIF2α phosphorylation in the nonpreferred carbon source galactose, but this occurs by inhibition of protein phosphatase 1α (PP1α; Glc7) and the PP2A-like enzyme Sit4, rather than activation of Gcn2. Both Glc7 and Sit4 physically interact with eIF2α in cell extracts, supporting their direct roles as eIF2α phosphatases. Our results show that Snf1 modulates the level of eIF2α phosphorylation by different mechanisms, depending on the kind of nutrient deprivation existing in cells.


2012 ◽  
Vol 287 (42) ◽  
pp. 35299-35317 ◽  
Author(s):  
Nicole Kloft ◽  
Claudia Neukirch ◽  
Gisela von Hoven ◽  
Wiesia Bobkiewicz ◽  
Silvia Weis ◽  
...  

The constitutive reverter of eIF2α phosphorylation (CReP)/PPP1r15B targets the catalytic subunit of protein phosphatase 1 (PP1c) to phosphorylated eIF2α (p-eIF2α) to promote its dephosphorylation and translation initiation. Here, we report a novel role and mode of action of CReP. We found that CReP regulates uptake of the pore-forming Staphylococcus aureus α-toxin by epithelial cells. This function was independent of PP1c and translation, although p-eIF2α was involved. The latter accumulated at sites of toxin attack and appeared conjointly with α-toxin in early endosomes. CReP localized to membranes, interacted with phosphomimetic eIF2α, and, upon overexpression, induced and decorated a population of intracellular vesicles, characterized by accumulation of N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a lipid marker of exosomes and intralumenal vesicles of multivesicular bodies. By truncation analysis, we delineated the CReP vesicle induction/association region, which comprises an amphipathic α-helix and is distinct from the PP1c interaction domain. CReP was also required for exocytosis from erythroleukemia cells and thus appears to play a broader role in membrane traffic. In summary, the mammalian traffic machinery co-opts p-eIF2α and CReP, regulators of translation initiation.


Sign in / Sign up

Export Citation Format

Share Document