translation initiation factor 3
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 20)

H-INDEX

27
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Chengzhi Xu ◽  
Yupeng Shen ◽  
Yong Shi ◽  
Ming Zhang ◽  
Liang Zhou

Abstract Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer type worldwide. Deregulation of mRNA translation is a frequent feature of cancer. Eukaryotic Translation Initiation Factor 3 Subunit B (EIF3B) has reported as oncogenes in cancer. However, the role of EIF3B in HNSCC remains unclear. Methods: In this study, the clinical significance of EIF3B expression in TCGA was analyzed. Then the expression of EIF3B was knockdown, and its role in HNSC was revealed. To explore the molecular mechanism of EIF3B, we applied RNA sequencing and proteomics, and deregulated pathways were acquired. RNA immunoprecipitation (RIP) sequencing was conducted to uncover the targeting mRNAs of EIF3B. Potential targets of EIF3B were validated with TCGA datasets.Results: EIF3B serves a hazardous prognostic marker in HNSCC. Besides, EIF3B promotes HNSCC proliferation and progression in vitro and in vivo. EIF3B promotes CEBPB translation and activate MAPK pathway. IL6R and CCNG2 is a target of EIF3B regulated CEBPB translation. Conclusion: In sum, this study reveals EIF3B as a novel oncogene in HNSCC, by promoting CEBPB translation and IL6R expression.


2021 ◽  
Author(s):  
Zhi Lin ◽  
Yuka Amako ◽  
Farah Kabir ◽  
Hope A Flaxman ◽  
Bogdan Budnik ◽  
...  

The thalidomide analog lenalidomide is a clinical therapeutic that alters the substrate engagement of cereblon (CRBN), a substrate receptor for the CRL4 E3 ubiquitin ligase. Here, we report the development of photo-lenalidomide, a lenalidomide probe with a photo-affinity label and enrichment handle, for target identification by chemical proteomics. After evaluating a series of lenalidomide analogs, we identified a specific amide linkage to lenalidomide that allowed for installation of the desired functionality, while preserving the substrate degradation profile, phenotypic anti-proliferative and immunomodulatory properties of lenalidomide. Photo-lenalidomide maintains these properties by enhancing binding interactions with the thalidomide-binding domain of CRBN, as revealed by binding site mapping and molecular modeling. Using photo-lenalidomide, we captured the known targets IKZF1 and CRBN from multiple myeloma MM.1S cells, and further identified a new target, eukaryotic translation initiation factor 3 subunit i (eIF3i), from HEK293T cells. eIF3i is directly labeled by photo-lenalidomide and forms a complex with CRBN in the presence of lenalidomide, but is itself not ubiquitylated or degraded. These data point to the potentially broader array of substrates induced by ligands to CRBN that may or may not be degraded, which can be revealed by the highly translatable application of photo-lenalidomide and chemical proteomics in additional biological settings.


2021 ◽  
Vol 11 ◽  
Author(s):  
Haoyuan Ren ◽  
Gang Mai ◽  
Yong Liu ◽  
Rongchao Xiang ◽  
Chong Yang ◽  
...  

Background: Pancreatic cancer (PC) is a malignant tumor with hidden incidence, high degree of malignancy, rapid disease progression, and poor prognosis. Eukaryotic translation initiation factor 3 subunit B (EIF3B) is necessary for tumor growth, which is an alternative therapeutic target for many cancers. However, little is known about the relationship between EIF3B and PC.Methods: The expression of EIF3B in PC was detected by immunohistochemistry. EIF3B knockdown cell models were constructed by lentivirus infection. The MTT assay, the wound-healing assay, the transwell assay, the flow cytometry, and the Human Apoptosis Antibody Array was used to detect the effects of EIF3B knockdown on cell proliferation, cell migration, cell apoptosis, and cell cycle in vitro. Also, the effects of EIF3B knockdown on the tumor growth of PC were determined in vivo.Results: This study showed that the expression level of EIF3B was significantly up-regulated in PC tumor tissues and associated with pathological grade. In vitro, EIF3B knockdown inhibited the PC cell proliferation and migration, and the apoptosis levels were obviously promoted by regulating apoptosis-related proteins including Bcl-2, HSP27, HSP60, Survivin, sTNF-R2, TNF-α, TNF-β, TRAILR-3, TRAILR-4, and XIAP. Furthermore, the tumor growth of PC was inhibited after the knockdown of EIF3B in vivo.Conclusion: EIF3B was up-regulated in PC and was a promoter in the development and progression of PC, which could be considered as a therapeutic target for the treatment of PC.


2020 ◽  
Vol 21 (10) ◽  
pp. 3414
Author(s):  
Ivan Chicherin ◽  
Sergey Levitskii ◽  
Maria V. Baleva ◽  
Igor A. Krasheninnikov ◽  
Maxim V. Patrushev ◽  
...  

Mitochondrial genomes code for several core components of respiratory chain complexes. Thus, mitochondrial translation is of great importance for the organelle as well as for the whole cell. In yeast, mitochondrial translation initiation factor 3, Aim23p, is not essential for the organellar protein synthesis; however, its absence leads to a significant quantitative imbalance of the mitochondrial translation products. This fact points to a possible specific action of Aim23p on the biosynthesis of some mitochondrial protein species. In this work, we examined such peculiar effects of Aim23p in relation to yeast mitochondrial COX2 mRNA translation. We show that Aim23p is indispensable to this process. According to our data, this is mediated by Aimp23p interaction with the known specific factor of the COX2 mRNA translation, Pet111p. If there is no Aim23p in the yeast cells, an increased amount of Pet111p ensures proper COX2 mRNA translation. Our results demonstrate the additional non-canonical function of initiation factor 3 in yeast mitochondrial translation.


2020 ◽  
Vol 6 (18) ◽  
pp. eaaz4848 ◽  
Author(s):  
Amy E. Arnold ◽  
Laura J. Smith ◽  
Greg Beilhartz ◽  
Laura C. Bahlmann ◽  
Emma Jameson ◽  
...  

Toxins efficiently deliver cargo to cells by binding to cell surface ligands, initiating endocytosis, and escaping the endolysosomal pathway into the cytoplasm. We took advantage of this delivery pathway by conjugating an attenuated diphtheria toxin to siRNA, thereby achieving gene downregulation in patient-derived glioblastoma cells. We delivered siRNA against integrin-β1 (ITGB1)—a gene that promotes invasion and metastasis—and siRNA against eukaryotic translation initiation factor 3 subunit b (eIF-3b)—a survival gene. We demonstrated mRNA downregulation of both genes and the corresponding functional outcomes: knockdown of ITGB1 led to a significant inhibition of invasion, shown with an innovative 3D hydrogel model; and knockdown of eIF-3b resulted in significant cell death. This is the first example of diphtheria toxin being used to deliver siRNAs, and the first time a toxin-based siRNA delivery strategy has been shown to induce relevant genotypic and phenotypic effects in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document