scholarly journals Fork head controls the timing and tissue selectivity of steroid-induced developmental cell death

2007 ◽  
Vol 176 (6) ◽  
pp. 843-852 ◽  
Author(s):  
Chike Cao ◽  
Yanling Liu ◽  
Michael Lehmann

Cell death during Drosophila melanogaster metamorphosis is controlled by the steroid hormone 20-hydroxyecdysone (20E). Elements of the signaling pathway that triggers death are known, but it is not known why some tissues, and not others, die in response to a particular hormone pulse. We found that loss of the tissue-specific transcription factor Fork head (Fkh) is both required and sufficient to specify a death response to 20E in the larval salivary glands. Loss of fkh itself is a steroid-controlled event that is mediated by the 20E-induced BR-C gene, and that renders the key death regulators hid and reaper hormone responsive. These results implicate the D. melanogaster FOXA orthologue Fkh with a novel function as a competence factor for steroid-controlled cell death. They explain how a specific tissue is singled out for death, and why this tissue survives earlier hormone pulses. More generally, they suggest that cell identity factors like Fkh play a pivotal role in the normal control of developmental cell death.

2012 ◽  
Vol 21 (3) ◽  
pp. 283-295 ◽  
Author(s):  
U. Gangishetti ◽  
J. Veerkamp ◽  
D. Bezdan ◽  
H. Schwarz ◽  
I. Lohmann ◽  
...  

2020 ◽  
Author(s):  
Yeoh Sue Lynn ◽  
Alina Letzel ◽  
Clemence Bernard Hannah Somerfield ◽  
Kyle Kyser ◽  
Emily Lin ◽  
...  

AbstractThe transcription factor Odd-skipped has been implicated in many developmental processes in Drosophila melanogaster. Odd-skipped is expressed in a small cluster of neurons (Slater, Levy et al.) in the developing and adult CNS but its role in neurogenesis has so far not been addressed. Here we show that Odd-skipped plays a pivotal role in neurite growth and arborization during development. Loss-of-Odd-skipped function prevents neurite outgrowth whereas over and miss-expression causes neurite growth and arborization defects. In addition, miss-expression of Odd-skipped can induce cell death in some neural sub types. The neurite growth and arborization defects associated with Odd-skipped over expression correlates with a reduction in the pre-synaptically targeted protein Bruchpilot in axonal arbours suggesting an overall decrease in Odd neural synapse formation. This is supported by behavioural data showing that larvae in which Odd-skipped is overexpressed behave similarly to larvae in which Odd neurons are silenced showing that increasing Odd-skipped protein levels affect neural function. Finally, we demonstrate that using RNAi against Odd-skipped does not knock down Odd-skipped protein but instead cause an increase in protein levels compared to control larvae. This data demonstrates that RNAi can cause up-regulation of protein levels highlighting the importance of verifying protein levels when using RNAi approaches for knock-down.


Sign in / Sign up

Export Citation Format

Share Document