Studies of cell migration and programmed cell death: characterization and analysis of scattershot, a mutation disrupting germ cell migration and programmed cell death in Drosophila melanogaster

2008 ◽  
Author(s):  
Angela Renee Kamps
Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 273-284 ◽  
Author(s):  
Clark R Coffman ◽  
Rachel C Strohm ◽  
Fredrick D Oakley ◽  
Yukiko Yamada ◽  
Danielle Przychodzin ◽  
...  

Abstract Drosophila germ cells form at the posterior pole of the embryo and migrate to the somatic gonad. Approximately 50% of the germ cells that form reach their target. The errant cells within the embryo undergo developmentally regulated cell death. Prior studies have identified some autosomal genes that regulate germ cell migration, but the genes that control germ cell death are not known. To identify X-linked genes required for germ cell migration and/or death, we performed a screen for mutations that disrupt these processes. Here we report the identification of scattershot and outsiders, two genes that regulate the programmed death of germ cells. The scattershot gene is defined by a mutation that disrupts both germ cell migration and the death of germ cells ectopic to the gonad. Maternal and zygotic expression of scattershot is required, but the migration and cell death functions can be genetically uncoupled. Zygotic expression of wild-type scattershot rescues germ cell pathfinding, but does not restore the programmed death of errant cells. The outsiders gene is required zygotically. In outsiders mutant embryos, the appropriate number of germ cells is incorporated into the gonad, but germ cells ectopic to the gonad persist.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1231-1241 ◽  
Author(s):  
Nian Zhang ◽  
Jiaping Zhang ◽  
Yan Cheng ◽  
Ken Howard

Abstract We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA.


Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 655-666 ◽  
Author(s):  
H.T. Broihier ◽  
L.A. Moore ◽  
M. Van Doren ◽  
S. Newman ◽  
R. Lehmann

In Drosophila as well as many vertebrate systems, germ cells form extraembryonically and migrate into the embryo before navigating toward gonadal mesodermal cells. How the gonadal mesoderm attracts migratory germ cells is not understood in any system. We have taken a genetic approach to identify genes required for germ cell migration in Drosophila. Here we describe the role of zfh-1 in germ cell migration to the gonadal mesoderm. In zfh-1 mutant embryos, the initial association of germ cells and gonadal mesoderm is blocked. Loss of zfh-1 activity disrupts the development of two distinct mesodermal populations: the caudal visceral mesoderm and the gonadal mesoderm. We demonstrate that the caudal visceral mesoderm facilitates the migration of germ cells from the endoderm to the mesoderm. Zfh-1 is also expressed in the gonadal mesoderm throughout the development of this tissue. Ectopic expression of Zfh-1 is sufficient to induce additional gonadal mesodermal cells and to alter the temporal course of gene expression within these cells. Finally, through analysis of a tinman zfh-1 double mutant, we show that zfh-1 acts in conjunction with tinman, another homeodomain protein, in the specification of lateral mesodermal derivatives, including the gonadal mesoderm.


Sign in / Sign up

Export Citation Format

Share Document