scholarly journals THE ORGANIZATION OF FLIGHT MUSCLE FIBERS IN THE ODONATA

1966 ◽  
Vol 28 (1) ◽  
pp. 109-126 ◽  
Author(s):  
David S. Smith

The cytological organization of flight muscle fibers of Odonata has been investigated. These fibers, in representatives of the Zygoptera and Anisoptera, have been compared and found to be similar, except that, in the former, pairs of lamellar fibrils, rather than single fibrils, alternate with the mitochondria. In each instance, in these synchronous muscles, the actin filaments of the myofibrils are found to lie opposite to and midway between pairs of myosin filaments—a configuration previously reported in asynchronous flight muscle fibers. The disposition of the T system and sarcoplasmic reticulum membranes in glutaraldehyde-fixed anisopteran muscle is described in detail: the T system tubules are shown to be radially continuous across the fiber, and are derived as openmouthed invaginations from the surface cell-membrane. The detailed organization of the dyad junctions between these tubules and the adjoining cisternae of the sarcoplasmic reticulum is described. The accessibility of the T system interior to diffusion exchange with the general extracellular milieu has been investigated by studies on the penetration of ferritin into the fiber: molecules of this marker have been found to diffuse solely along the T system tubules, and their presence in the tubule extremities adjoining the centrally placed nuclei confirms the morphological evidence suggesting that these tubules provide open diffusion channels extending across the radius of the fiber. The possible physiological role of these membrane components and their distribution in synchronous muscles of insects and vertebrates and in asynchronous insect flight muscle are discussed.

1967 ◽  
Vol 33 (3) ◽  
pp. 531-542 ◽  
Author(s):  
J. F. Reger ◽  
D. P. Cooper

Basalar and tibial extensor muscle fibers of Achalarus lyciades were examined with light and electron microscopes. Basalar muscle fibers are 100–150 µ in diameter. T-system membranes and sarcoplasmic reticulum make triadic contacts midway between Z lines and the middle of each sarcomere. The sarcoplasmic reticulum is characterized by a transverse element situated among myofilaments halfway between Z lines in every sarcomere. The morphology of Z lines, hexagonal packing of thin and thick myofilaments, and thin/thick myofilament ratios are similar to those of fast-acting insect muscles. Tibial extensor muscle fibers are 50–100 µ in diameter. Except for a lack of the transverse element, the T system and sarcoplasmic reticulum are similar to those of basalar muscle. Wavy Z lines, lack of a hexagonal packing of myofilaments, and larger thin/thick myofilament ratios are similar to those of other postural muscles of insects. The morphology of basalar and tibial extensor muscle is compared to that of other insect muscle with known functions, and reference is made to the possible contribution of the transverse element of sarcoplasmic reticulum in basalar flight muscle to speed and synchrony in this muscle.


1989 ◽  
Vol 93 (1) ◽  
pp. 1-21 ◽  
Author(s):  
C W Abramcheck ◽  
P M Best

The role of K+ as a counterion during Ca2+ release from the sarcoplasmic reticulum (SR) has been investigated. An optical technique using the Ca2+-sensitive dye antipyrylazo III monitored Ca2+ release from skinned (sarcolemma removed) muscle fibers of the frog. Skinned fibers were used since the removal of the sarcolemma allows direct access to the SR membrane. Releases were stimulated by caffeine, which activates Ca2+ release directly by binding to a receptor on the SR. Two different methods were used to decrease the SR K+ conductance so that its effect on Ca2+ release could be assessed: (a) the SR K+ channel blocker, 1,10-bis-quanidino-n-decane (bisG10) was used to eliminate current pathways and (b) substitution of the impermeant ion choline for K+ was used to decrease charge carriers. Both bisG10 and choline substitution caused a concentration-dependent decrease in the Ca2+ release rate. Therefore we conclude that K+ is an important counterion for Ca2+ during its release from the SR. The selectivity of the in situ SR K+ channel to several monovalent cations was determined by substituting them for K+ and comparing their effect on Ca2+ release. The substituted ions were expected to affect Ca2+ release in proportion to their ability to support a counterion flux, which is, in turn, a function of their relative conductance through the SR K+ channel. The selectivity sequence determined by these experiments was K+ = Rb+ = Na+ greater than Cs+ greater than Li+ greater than choline.


2009 ◽  
Vol 7 (3) ◽  
pp. 471-478 ◽  
Author(s):  
Monica Jones Costa ◽  
Francisco Tadeu Rantin ◽  
Ana Lúcia Kalinin

This study analyzed the physiological role of the cardiac sarcoplasmic reticulum (SR) of two neotropical teleosts, the jeju, Hoplerythrinus unitaeniatus (Erythrinidae), and the acara, Geophagus brasiliensis (Cichlidae). While the in vivo heart frequency (fH - bpm) of acara (79.6 ± 6.6) was higher than that of the jeju (50.3 ± 2.7), the opposite was observed for the ventricular inotropism (Fc - mN/mm²) at 12 bpm (acara = 28.66 ± 1.86 vs. jeju = 36.09 ± 1.67). A 5 min diastolic pause resulted in a strong potentiation of Fc (≅ 90%) of strips from jeju, which was completely abolished by ryanodine. Ryanodine also resulted in a ≅ 20% decrease in the Fc developed by strips from jeju at both subphysiological (12 bpm) and physiological (in vivo) frequencies. However, this effect of ryanodine reducing the Fc from jeju was completely compensated by adrenaline increments (10-9 and 10-6 M). In contrast, strips from acara were irresponsive to ryanodine, irrespective of the stimulation frequency, and increases in adrenaline concentration (to 10-9 and 10-6 M) further increased Fc. These results reinforce the hypothesis of the functionality of the SR as a common trait in neotropical ostariophysian (as jeju), while in acanthopterygians (as acara) it seems to be functional mainly in 'athletic' species.


1978 ◽  
Vol 172 (3) ◽  
pp. 533-537 ◽  
Author(s):  
E A Newsholme ◽  
I Beis ◽  
A R Leech ◽  
V A Zammit

Arginine and creatine kinase activities in different muscles are compared with calculated maximum rates of ATP turnover. The magnitude of the kinase activities decreases in the following order: anaerobic muscles and vertebrate skeletal muscles greater than heart muscle greater than insect flight muscle. The maximum activity of phosphagen kinases (i.e. creatine kinase and arginine kinase), in the direction of phosphagen formation, is lower than the calculated maximum rate of ATP turnover in insect flight muscle or rat heart.


2006 ◽  
Vol 291 (2) ◽  
pp. C245-C253 ◽  
Author(s):  
Alessandra Nori ◽  
Giorgia Valle ◽  
Elena Bortoloso ◽  
Federica Turcato ◽  
Pompeo Volpe

Calsequestrin (CS) is the low-affinity, high-capacity calcium binding protein segregated to the lumen of terminal cisternae (TC) of the sarcoplasmic reticulum (SR). The physiological role of CS in controlling calcium release from the SR depends on both its intrinsic properties and its localization. The mechanisms of CS targeting were investigated in skeletal muscle fibers and C2C12 myotubes, a model of SR differentiation, with four deletion mutants of epitope (hemagglutinin, HA)-tagged CS: CS-HAΔ24NH2, CS-HAΔ2D, CS-HAΔ3D, and CS-HAΔHT, a double mutant of the NH2 terminus and domain III. As judged by immunofluorescence of transfected skeletal muscle fibers, only the double CS-HA mutant showed a homogeneous distribution at the sarcomeric I band, i.e., it did not segregate to TC. As shown by subfractionation of microsomes derived from transfected skeletal muscles, CS-HAΔHT was largely associated to longitudinal SR whereas CS-HA was concentrated in TC. In C2C12 myotubes, as judged by immunofluorescence, not only CS-HAΔHT but also CS-HAΔ3D and CS-HAΔ2D were not sorted to developing SR. Condensation competence, a property referable to CS oligomerization, was monitored for the several CS-HA mutants in C2C12 myoblasts, and only CS-HAΔ3D was found able to condense. Together, the results indicate that 1) there are at least two targeting sequences at the NH2 terminus and domain III of CS, 2) SR-specific target and structural information is contained in these sequences, 3) heterologous interactions with junctional SR proteins are relevant for segregation, 4) homologous CS-CS interactions are involved in the overall targeting process, and 5) different targeting mechanisms prevail depending on the stage of SR differentiation.


Sign in / Sign up

Export Citation Format

Share Document