scholarly journals CHARACTERIZATION OF A UNIQUE MUSCLE CELL LINE

1974 ◽  
Vol 61 (2) ◽  
pp. 398-413 ◽  
Author(s):  
David Schubert ◽  
A. John Harris ◽  
Carrick E. Devine ◽  
Stephen Heinemann

A clonal cell line derived from a mouse neoplasm is described which shares many properties with smooth muscle. The cells have electrically excitable membranes capable of generating overshooting action potentials, and they contract both spontaneously and with electrical stimulation. They respond to the iontophoretic application of acetylcholine with a depolarizing response, and to norepinephrine with a hyperpolarizing response. Electron microscopy reveals that the cells have a morphology similar in many, but not all, respects to that of smooth muscle cells in vivo. The cells secrete soluble collagen-like molecules in addition to several proteins of undefined function. Finally, there is an increase in the specific activities of creatine phosphokinase and myokinase associated with increased cell density and the cessation of cell division.

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 70
Author(s):  
Lourdes Mateos-Hernández ◽  
Natália Pipová ◽  
Eléonore Allain ◽  
Céline Henry ◽  
Clotilde Rouxel ◽  
...  

Neuropeptides are small signaling molecules expressed in the tick central nervous system, i.e., the synganglion. The neuronal-like Ixodes scapularis embryonic cell line, ISE6, is an effective tool frequently used for examining tick–pathogen interactions. We detected 37 neuropeptide transcripts in the I. scapularis ISE6 cell line using in silico methods, and six of these neuropeptide genes were used for experimental validation. Among these six neuropeptide genes, the tachykinin-related peptide (TRP) of ISE6 cells varied in transcript expression depending on the infection strain of the tick-borne pathogen, Anaplasma phagocytophilum. The immunocytochemistry of TRP revealed cytoplasmic expression in a prominent ISE6 cell subpopulation. The presence of TRP was also confirmed in A. phagocytophilum-infected ISE6 cells. The in situ hybridization and immunohistochemistry of TRP of I. scapularis synganglion revealed expression in distinct neuronal cells. In addition, TRP immunoreaction was detected in axons exiting the synganglion via peripheral nerves as well as in hemal nerve-associated lateral segmental organs. The characterization of a complete Ixodes neuropeptidome in ISE6 cells may serve as an effective in vitro tool to study how tick-borne pathogens interact with synganglion components that are vital to tick physiology. Therefore, our current study is a potential stepping stone for in vivo experiments to further examine the neuronal basis of tick–pathogen interactions.


1991 ◽  
Vol 197 (1-2) ◽  
pp. 109-112 ◽  
Author(s):  
Ralph E. Howell ◽  
Keith Laemont ◽  
Raymond Gaudette ◽  
Maureen Raynor ◽  
Abby Warner ◽  
...  

1989 ◽  
Vol 25 (10) ◽  
pp. 892-898 ◽  
Author(s):  
Maurice Nachtigal ◽  
Madan L. Nagpal ◽  
Phillip Greenspan ◽  
Sidonia A. Nachtigal ◽  
Alain Legrand

2018 ◽  
Vol 34 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Tharmala Tharmalingam ◽  
Hedieh Barkhordarian ◽  
Nicole Tejeda ◽  
Kristi Daris ◽  
Sam Yaghmour ◽  
...  

2019 ◽  
Vol 317 (5) ◽  
pp. L690-L701
Author(s):  
Joyce Hojin Jang ◽  
Alice Panariti ◽  
Michael J. O’Sullivan ◽  
Melissa Pyrch ◽  
Chris Wong ◽  
...  

Cystic fibrosis (CF) is a genetic disease that causes multiple airway abnormalities. Two major respiratory consequences of CF are airway hyperresponsiveness (AHR) and airway remodeling. Airway smooth muscle (ASM) is hypothesized to be responsible for the airway dysfunction, since their thickening is involved in remodeling, and excessive contraction by the ASM may cause AHR. It is unclear whether the ASM is intrinsically altered to favor increased contractility or proliferation or if microenvironmental influences induce pathological behavior in vivo. In this study, we examined the contractile and proliferative properties of ASM cells isolated from healthy donor and CF transplant lungs. Assays of proliferation showed that CF ASM proliferates at a higher rate than healthy cells. Through calcium analysis, no differences in contractile activation in response to histamine were found. However, CF ASM cells lagged in their reuptake of calcium in the sarcoplasmic reticulum. The combination CFTR corrector and potentiator, VX-809/770, used to restore CFTR function in CF ASM, resulted in a reduction in proliferation and in a normalization of calcium reuptake kinetics. These results show that impaired CFTR function in ASM cells causes intrinsic changes in their proliferative and contractile properties.


Sign in / Sign up

Export Citation Format

Share Document