aortic smooth muscle
Recently Published Documents


TOTAL DOCUMENTS

2246
(FIVE YEARS 123)

H-INDEX

96
(FIVE YEARS 6)

2021 ◽  
Vol 22 (24) ◽  
pp. 13536
Author(s):  
Ricardo Villa-Bellosta

Cardiovascular complications due to accelerated arterial stiffening and atherosclerosis are the leading cause of morbimortality in Western society. Both pathologies are frequently associated with vascular calcification. Pathologic calcification of cardiovascular structures, or vascular calcification, is associated with several diseases (for example, genetic diseases, diabetes, and chronic kidney disease) and is a common consequence of aging. Calcium phosphate deposition, mainly in the form of hydroxyapatite, is the hallmark of vascular calcification and can occur in the medial layer of arteries (medial calcification), in the atheroma plaque (intimal calcification), and cardiac valves (heart valve calcification). Although various mechanisms have been proposed for the pathogenesis of vascular calcification, our understanding of the pathogenesis of calcification is far from complete. However, in recent years, some risk factors have been identified, including high serum phosphorus concentration (hyperphosphatemia) and defective synthesis of pyrophosphate (pyrophosphate deficiency). The balance between phosphate and pyrophosphate, strictly controlled by several genes, plays a key role in vascular calcification. This review summarizes the current knowledge concerning phosphate and pyrophosphate homeostasis, focusing on the role of extracellular pyrophosphate metabolism in aortic smooth muscle cells and macrophages.


Vascular ◽  
2021 ◽  
pp. 170853812110521
Author(s):  
Fan Zhu ◽  
Jia Chen ◽  
Mingyao Luo ◽  
Dongting Yao ◽  
Xiaobo Hu ◽  
...  

Objectives To evaluate the potential effect of EphrinB2 in human thoracic aortic dissection (TAD) and to illustrate the mechanisms governing the role of EphrinB2 in the growth of human aortic smooth muscle cells (HASMC). Methods In the study, EphrinB2 expression was investigated by qRT-PCR and immunohistochemistry in 12 pairs of TAD and adjacent human tissues. HASMCs were used for in vitro experiments. Next, EphrinB2 overexpression and depletion in HASMCs were established by EphrinB2-overexpressing vectors and small interfering RNA, respectively. The transfection efficiency was evaluated by qRT-PCR and Western blot. The effects of overexpression and depletion of EphrinB2 on cell proliferation, migration, and invasion were tested in vitro. Cell Counting Kit-8, flow cytometry and transwell migration/invasion, and wound healing assay were used to explore the function of EphrinB2 on HASMC cell lines. The relationship between EphrinB2 and F-actin was assessed by Western blot, immunofluorescence, and Co-IP. Results We found that EphrinB2 was a prognostic biomarker of TAD patients. Moreover, EphrinB2 expression negatively correlated to aortic dissection tissues, and disease incidence of males, suggesting that EphrinB2 might act as a TAD suppressor by promoting proliferation or decreasing apoptosis in HASMC. Next, over-expression of EphrinB2 in HASMC lines drove cell proliferation, migration, and invasion, and inhibited apoptosis while knockdown EphrinB2 showed the opposite phenomenon, respectively. Furthermore, the level of F-actin in mRNA, protein, and distribution in HASMC cell lines highly matched with the expression of EphrinB2, which indicated that EphrinB2 could mediate the HASMC cytoskeleton via inducing F-actin. Conclusions In conclusion, our results first provided the pivotal role of EphrinB2 in HASMC proliferation initiated by mediating F-actin and demonstrated a prognostic biomarker and the potential targets for therapy to prevent thoracic aortic dissection.


2021 ◽  
Vol 60 (1) ◽  
pp. 17-24
Author(s):  
Quanquan Shen ◽  
Qian Chen ◽  
Yang Liu ◽  
Xiang Xue ◽  
Xiaogang Shen ◽  
...  

2021 ◽  
Author(s):  
Sara Morini ◽  
Iris Pla-Palacín ◽  
Pilar Sainz-Arnal ◽  
Natalia Sánchez-Romero ◽  
Maria Falceto ◽  
...  

Abstract There is significant interest in the pig as the animal model of choice for organ transplantation and the study of tissue engineering (TE) products and applications. Currently, efforts are being taken to bioengineer solid organs to reduce donor shortages for transplantation. For complex organs such as the lung, heart, and liver, the vasculature represents a fundamental feature. Thus, to generate organs with a functional vascular network, the different cells constituting the building blocks of the blood vessels should be procured. However, due to species' specificities, porcine cell isolation, expansion, and characterization are not entirely straightforward compared to human cell procurement. Here, we report the establishment of simple and suitable methods for the isolation and characterization of distinct porcine cells for bioengineering purposes.We successfully isolated, expanded and characterized porcine bone marrow-derived mesenchymal stromal (pBM-MSC), aortic smooth muscle (pASMC), and umbilical vein endothelial cells (pUVEC). We demonstrated that the three cell types showed specific immunophenotypical features. Moreover, we demonstrated that pBM-MSC could preserve their multipotency in vitro, and pUVEC were capable of maintaining their functionality in vitro.These cultured cells could be further expanded and represent a useful cellular tool for TE purposes (i.e., for recellularization approaches of vascularized organs or in vitro angiogenesis studies).


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenhui Gao ◽  
Rong Li ◽  
Jingjing Yu ◽  
Xijie He ◽  
Duo Xu ◽  
...  

Abstract Background SCIRT has been characterized as a key player in cancer biology, while its role in other human diseases is unclear. This study explored its role in atherosclerosis, with a specific focus on its interaction with SCIRT and miR-146a. Methods The expression of SCIRT and miR-146a in atherosclerosis-affected tissues and healthy tissues from 56 atherosclerosis patients were analyzed by RT-qPCR. The expression of SCIRT in nuclear and cytoplasm samples was detected by RNA fractionation assay. The direct interaction between SCIRT and miR-146a was detected by RNA pull-down assay. SCIRT and miR-146a were overexpressed in human aortic smooth muscle cells (HAOSMCs) to study the crosstalk between them. The role of SCIRT and miR-146a in the proliferation of HAOSMCs was analyzed with BrdU assay. Results SCIRT was downregulated by atherosclerosis, while miR-146a was upregulated by atherosclerosis. SCIRT was detected in both cytoplasm and nuclear samples, and it directly interacted with miR-146a. In HAOSMCs, overexpression of SCIRT and miR-146a did not affect the expression of each other. Interestingly, SCIRT suppressed the proliferation of HAOSMCs and reduced the enhancing effects of miR-146a on cell proliferation. Conclusion Therefore, SCIRT is downregulated in atherosclerosis and it suppresses the proliferation of HAOSMCs by sponging miR-146a in cytoplasm.


2021 ◽  
Vol 78 (18) ◽  
pp. 1796-1799
Author(s):  
Eloisa Arbustini ◽  
Navneet Narula

2021 ◽  
pp. 1-11
Author(s):  
Dong-Sheng Lin ◽  
Chi-Yuan Zhang ◽  
Liang Li ◽  
Guo-Hong Ye ◽  
Lu-Ping Jiang ◽  
...  

Atherosclerosis is the leading global cause of mortality. The occurrence of coronary artery disease (CAD) is regulated by a diversity of pathways, including circRNAs. However, the potential mechanisms of circRNAs in CAD remain unclear. Here, qRT-PCR was used to examine the expressions of miR-149 and circ_ROBO2. Their influences on cell proliferation, migration, and apoptosis were measured by CCK-8, trans­well, and flow cytometry assays, respectively. The protein levels of p-IκBα and NF-κB p65 were examined using western blot. The molecular interactions were validated using dual luciferase reporter and RNA pull-down assays. The expression patterns of circ_ROBO2 and miR-149 in CAD patients and PDGF-BB-treated human aortic smooth muscle cells (HASMCs) were upregulated and downregulated, respectively. Knockdown of circ_ROBO2 could markedly inhibit the capabilities of proliferation and migration, enhance the apoptotic rate, and suppress NF-κB signaling in PDGF-BB-treated HASMCs. Mechanistically, circ_ROBO2 acted as a sponge of miR-149 to activate TRAF6/NF-κB signaling. Rescue studies demonstrated that neither silencing miR-149 nor activation of NF-κB signaling obviously abolished the biological roles of circ_ROBO2 knockdown in PDGF-BB treated-HASMCs. This discovery elucidated a functional mechanism of circ_ROBO2 in CAD, suggesting that circRNAs serve a vital role in the progression of CAD.


2021 ◽  
Vol 11 (3) ◽  
pp. 148-163
Author(s):  
Courtney E. Vujakovich ◽  
Benjamin J. Landis

Thoracic aortic aneurysm (TAA) is a heritable aortopathy with significant morbidity and mortality, affecting children and adults. Genetic causes, pathobiological mechanisms, and prognostic markers are incompletely understood. In 2015, the Collaborative Human Aortopathy Repository (CHAR) was created to address these fundamental gaps. Patients with thoracic aortopathy, associated genetic diagnoses, or aortic valve disease are eligible for prospective enrollment. Family members and controls are also enrolled. Detailed clinical and family data are collected, and blood and aortic tissue biospecimens are processed for broad usage. A total of 1047 participants were enrolled. The mean age in 834 affected participants was 47 ± 22 (range <1 to 88) years and 580 were male (70%). A total of 156 (19%) were under the age of 21 years. Connective tissue diagnoses such as Marfan syndrome were present in 123 (15%). Unaffected participants included relatives (N = 176) and healthy aorta tissue controls (N = 37). Aortic or aortic valve biospecimens were acquired from over 290 and 110 participants, respectively. RNA and protein were extracted from cultured aortic smooth muscle cells (SMCs) for 90 participants. Over 1000 aliquots of aortic SMCs were cryopreserved. The CHAR’s breadth, robust biospecimen processing, and phenotyping create a unique, multipronged resource to accelerate our understanding of human aortopathy.


Sign in / Sign up

Export Citation Format

Share Document