in vivo experiments
Recently Published Documents





2022 ◽  
Vol 13 (1) ◽  
Yulianri Rizki Yanza ◽  
Malgorzata Szumacher-Strabel ◽  
Dorota Lechniak ◽  
Sylwester Ślusarczyk ◽  
Pawel Kolodziejski ◽  

Abstract Background Methane production and fatty acids (FA) biohydrogenation in the rumen are two main constraints in ruminant production causing environmental burden and reducing food product quality. Rumen functions can be modulated by the biologically active compounds (BACs) of plant origins as shown in several studies e.g. reduction in methane emission, modulation of FA composition with positive impact on the ruminant products. Coleus amboinicus Lour. (CAL) contains high concentration of polyphenols that may potentially reduce methane production and modulate ruminal biohydrogenation of unsaturated FA. This study aimed to investigate the effect of BAC of Coleus amboinicus Lour. (CAL) fed to growing lambs on ruminal methane production, biohydrogenation of unsaturated FA and meat characteristics. In this study, the in vitro experiment aiming at determining the most effective CAL dose for in vivo experiments was followed by two in vivo experiments in rumen-cannulated rams and growing lambs. Experiment 1 (RUSITEC) comprised of control and three experimental diets differing in CAL content (10%, 15%, and 20% of the total diet). The two in vivo experiments were conducted on six growing, rumen-cannulated lambs (Exp. 2) and 16 growing lambs (Exp. 3). Animals were assigned into the control (CON) and experimental (20% of CAL) groups. Several parameters were examined in vitro (pH, ammonia and VFA concentrations, protozoa, methanogens and select bacteria populations) and in vivo (methane production, digestibility, ruminal microorganism populations, meat quality, fatty acids profiles in rumen fluid and meat, transcript expression of 5 genes in meat). Results CAL lowered in vitro methane production by 51%. In the in vivo Exp. 3, CAL decreased methane production by 20% compared with the CON group, which corresponded to reduction of total methanogen counts by up to 28% in all experiments, notably Methanobacteriales. In Exp. 3, CAL increased or tended to increase populations of some rumen bacteria (Ruminococcus albus, Megasphaera elsdenii, Butyrivibrio proteoclasticus, and Butyrivibrio fibrisolvens). Dietary CAL suppressed the Holotricha population, but increased or tended to increase Entodiniomorpha population in vivo. An increase in the polyunsaturated fatty acid (PUFA) proportion in the rumen of lambs was noted in response to the CAL diet, which was mainly attributable to the increase in C18:3 cis-9 cis-12 cis-15 (LNA) proportion. CAL reduced the mRNA expression of four out of five genes investigated in meat (fatty acid synthase, stearoyl-CoA desaturase, lipoprotein lipase, and fatty acid desaturase 1). Conclusions Summarizing, polyphenols of CAL origin (20% in diet) mitigated ruminal methane production by inhibiting the methanogen communities. CAL supplementation also improved ruminal environment by modulating ruminal bacteria involved in fermentation and biohydrogenation of FA. Besides, CAL elevated the LNA concentration, which improved meat quality through increased deposition of n-3 PUFA.

2022 ◽  
Vol 12 (1) ◽  
Adrian Calborean ◽  
Sergiu Macavei ◽  
Mihaela Mocan ◽  
Catalin Ciuce ◽  
Adriana Bintintan ◽  

AbstractThe precise location of gastric and colorectal tumors is of paramount importance for the oncological surgeon as it dictates the limits of resection and the extent of lymphadenectomy. However, this task proves sometimes to be very challenging, especially in the laparoscopic setting when the tumors are small, have a soft texture, and do not invade the serosa. In this view, our research team has developed a new instrument adapted to minimally-invasive surgery, and manipulated solely by the operating surgeon which has the potential to locate precisely tumors of the digestive tract. It consists of an inductive proximity sensor and an electronic block encapsulated into an autoclavable stainless-steel cage that works in tandem with an endoscopic hemostatic clip whose structure was modified to increase detectability. By scanning the serosal side of the colon or stomach, the instrument is capable to accurately pinpoint the location of the clip placed previously during diagnostic endoscopy on the normal bowel mucosa, adjacent to the tumor. In the current in-vivo experiments performed on large animals, the modified clips were transported without difficulties to the point of interest and attached to the mucosa of the bowel. Using a laparoscopic approach, the detection rate of this system reached 65% when the sensor scanned the bowel at a speed of 0.3 cm/s, and applying slight pressure on the serosa. This value increased to 95% when the sensor was guided directly on the point of clip attachment. The detection rate dropped sharply when the scanning speed exceeded 1 cm/s and when the sensor-clip distance exceeded the cut-off value of 3 mm. In conclusion, the proposed detection system demonstrated its potential to offer a swift and convenient solution for the digestive laparoscopic surgeons, however its detection range still needs to be improved to render it useful for the clinical setting.

2022 ◽  
Vol 2022 ◽  
pp. 1-10
Ziyi Jiao ◽  
Yonggang Teng ◽  
Chunjing Zhan ◽  
Youbei Qiao ◽  
Yuying Ma ◽  

Photodynamic antimicrobial chemotherapy (PACT) is a promising therapy against biofilm infection. However, due to the saliva clearance and obstacle of biofilm, the photosensitizer is difficult to concentrate in the infection site; then, the PACT is less effective on oral biofilm infection. In this article, we report a special nano-antibacterial agent (SiO2-PCe6-IL) to solve the bottleneck problem of PACT in treatment of oral biofilm infections. The SiO2-PCe6-IL was composed of SiO2 and poly ionic liquid photosensitizer (PCe6-IL) and had tri-fold features of eliminate biofilm infection: high binding ability, breaking biofilm barriers, and enrichment photosensitizer in infection site. In oral biofilm, the SiO2-PCe6-IL changed to SiO2-PIL+ like claws of octopus that could hold tightly with biofilm. Then, the poly-dodecyl on the SiO2-PIL+ broke down the barrier of biofilm. The results of HR-MS and zeta potential indicated that SiO2-PCe6-IL could change to positive (SiO2-PIL+) in acidic environment. The interaction forces and morphology results proved that the SiO2-PIL+ had a higher affinity to biofilm and could destroy the biofilm structure. Then, the photosensitizer was enriched in biofilm at sites of infection. The in vitro and in vivo experiments showed that SiO2-PCe6-IL could effectively eradicate oral biofilm infections and control of dental caries.

Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 111
Cheng Yang ◽  
Shuxiang Guo ◽  
Xianqiang Bao

Interventional surgical robots are widely used in neurosurgery to improve surgeons’ working environment and surgical safety. Based on the actual operational needs of surgeons’ feedback during preliminary in vivo experiments, this paper proposed an isomorphic interactive master controller for the master–slave interventional surgical robot. The isomorphic design of the controller allows surgeons to utilize their surgical skills during remote interventional surgeries. The controller uses the catheter and guidewire as the operating handle, the same as during actual surgeries. The collaborative operational structure design and the working methods followed the clinical operational skills. The linear force feedback and torque feedback devices were designed to improve the safety of surgeries under remote operating conditions. An eccentric force compensation was conducted to achieve accurate force feedback. Several experiments were carried out, such as calibration experiments, master–slave control performance evaluation experiments, and operation comparison experiments on the novel and previously used controllers. The experimental results show that the proposed controller can perform complex operations in remote surgery applications and has the potential for further animal experiment evaluations.

2022 ◽  
Vol 18 ◽  
Boniface Pone Kamdem ◽  
Eutrophe Le Doux Kamto ◽  
Aboubakar ◽  
Dieudonné Emmanuel Pegnyemb ◽  
Ferreira Elizabeth Igne

Background: Plants from the genus Nymphaea L. have been used for decades to treat various diseases, including dysentery, diarrhea, uterine cancer, gonorrhea, inflammation conditions, among others. The present study aims to critically analyze comprehensive literature on ethnopharmacological uses, phytochemistry, pharmacology, and toxicity of Nymphaea L. Methods: The available information on Nymphaea L. was obtained from textbooks, theses, as well as published articles through libraries, and electronic databases. Results: More than 150 compounds, including flavonoids, phenolics, alkaloids, miscellaneous compounds, etc. were identified from Nymphaea L. extracts and pure molecules from Nymphaea L. exhibited a wide range of pharmacological activities, including antimicrobial, anti-inflammatory, anticancer, immunomodulatory, hepatoprotective, antioxidant, cytotoxic, among others. Conclusion: Referring to in vitro and in vivo studies, Nymphaea sp. are very promising medicinal plants, however, more in vivo experiments, cytotoxicity tests, and detailed mechanisms of action of their extracts, and compounds are recommended to confirm their ethnomedicinal claims into scientific rationale-based information.

2022 ◽  
Qiaojun Qu ◽  
Zeyu Zhang ◽  
Xiaoyong Guo ◽  
Junying Yang ◽  
Caiguang Cao ◽  

Abstract Incomplete tumor resection is the direct cause of the tumor recurrence and metastasis after surgery. Intraoperative accurate detection and elimination of microscopic residual cancer improve surgery outcomes. In this study, a powerful D1-π-A-D2-R type phototheranostic based on aggregation-induced emission (AIE)-active the second near-infrared window (NIR-II) fluorophore is designed and constructed. The prepared theranostic agent, A1 nanoparticles (NPs), simultaneously shows high absolute quantum yield (1.23%), excellent photothermal conversion efficiency (55.3%), high molar absorption coefficient and moderate singlet oxygen generation performance. In vivo experiments indicate that NIR-II fluorescence imaging of A1 NPs precisely detect microscopic residual tumor (2 mm in diameter) in the tumor bed and metastatic lymph nodes. More notably, a novel integrated strategy that achieves complete tumor eradication (no local recurrence and metastasis after surgery) is proposed. In summary, A1 NPs possess superior imaging and treatment performance, and can detect and eliminate residual tumor lesions intraoperatively. This work provides a promising technique for future clinical applications achieving improved surgical outcomes.

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 61
Sarah Geahchan ◽  
Parnian Baharlouei ◽  
Muhammed Azizur Rahman

Marine organisms harbor numerous bioactive substances that can be utilized in the pharmaceutical and cosmetic industries. Scientific research on various applications of collagen extracted from these organisms has become increasingly prevalent. Marine collagen can be used as a biomaterial because it is water soluble, metabolically compatible, and highly accessible. Upon review of the literature, it is evident that marine collagen is a versatile compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review, we demonstrate the advantages of marine collagen over land animal sources and the biomedical applications of marine collagen related to bone and skin damage. Finally, some limitations of marine collagen are briefly discussed.

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 445
Aikaterini Sakellaropoulou ◽  
Angeliki Siamidi ◽  
Marilena Vlachou

Melatonin (MLT) is involved in many functions of the human body, mainly in sleeping-related disorders. It also has anti-oxidant potential and has been proven very effective in the treatment of seasonal affective disorders (SAD), which afflict some people during short winter days. Melatonin has been implicated in a range of other conditions, including Parkinson’s disease, Alzheimer’s and other neurological conditions, and in certain cancers. Its poor solubility in water leads to an insufficient absorption that led scientists to investigate MLT inclusion in cyclodextrins (CDs), as inclusion of drugs in CDs is a way of increasing the solubility of many lipophilic moieties with poor water solubility. The aim of this review is to gather all the key findings on MLT/CD complexes. The literature appraisal concluded that MLT inclusion leads to a 1:1 complex with the majority of CDs and increases the solubility of the hormone. The interactions of MLT with CDs can be studied by a variety of techniques, such as NMR, FT-IR, XRD and DCS. More importantly, the in vivo experiments showed an increase in the uptake of MLT when included in a CD.

2022 ◽  
Vol 8 (1) ◽  
Zhongrui Li ◽  
Lan Zhang ◽  
Dongrui Liu ◽  
Zhanghui Yang ◽  
Di Xuan ◽  

AbstractChemotherapy resistance of tumor cells causes failure in anti-tumor therapies. Recently, N-terminal regulator of chromatin condensation 1 methyltransferase (NRMT) is abnormally expressed in different cancers. Hence, we speculate that NRMT may pay a crucial role in the development of chemosensitivity in retinoblastoma. We characterized the upregulation of NRMT in the developed cisplatin (CDDP)-resistant retinoblastoma cell line relative to parental cells. Loss-of-function experiments demonstrated that NRMT silencing enhanced chemosensitivity of retinoblastoma cells to CDDP. Next, NRMT was identified to enrich histone-H3 lysine 4 trimethylation in the promoter of centromere protein A (CENPA) by chromatin immunoprecipitation assay. Rescue experiments suggested that CENPA reduced chemosensitivity by increasing the viability and proliferation and reducing apoptosis of CDDP-resistant retinoblastoma cells, which was reversed by NRMT. Subsequently, CENPA was witnessed to induce the transcription of Myc and to elevate the expression of B cell lymphoma-2. At last, in vivo experiments confirmed the promotive effect of NRMT knockdown on chemosensitivity of retinoblastoma cells to CDDP in tumor-bearing mice. Taken together, NRMT is an inhibitor of chemosensitivity in retinoblastoma. Those findings shed new light on NRMT-targeted therapies for retinoblastoma.

Sign in / Sign up

Export Citation Format

Share Document