muscarinic receptor
Recently Published Documents


TOTAL DOCUMENTS

3068
(FIVE YEARS 129)

H-INDEX

90
(FIVE YEARS 5)

2022 ◽  
Vol 14 (627) ◽  
Author(s):  
Wenping Li ◽  
Yuchuan Wang ◽  
Talakad G. Lohith ◽  
Zhizhen Zeng ◽  
Ling Tong ◽  
...  

[ 11 C]MK-6884 is an M4R-specific PET tracer for quantifying target engagement in brain and providing insights into AD neuropathology.


The Analyst ◽  
2022 ◽  
Author(s):  
Xin-Xin Xu ◽  
wenliang ge ◽  
Steven Suryoprabowo ◽  
xin guo ◽  
jianping zhu ◽  
...  

Hyoscyamine (HSM) which act as antagonists of acetylcholine muscarinic receptor and can induce a variety of distinct toxic syndromes in mammals (anti-cholinergic poisoning) which hazardous in human health. Therefore, it...


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Leigh C. Walker ◽  
Erin J. Campbell ◽  
Kate L. Huckstep ◽  
Nicola A. Chen ◽  
Christopher J. Langmead ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Xiao-Li Zhang ◽  
Xiao-Hui Zhang ◽  
Xiao Yu ◽  
Li-Fei Zheng ◽  
Xiao-Yan Feng ◽  
...  

Constipation and defecatory dysfunctions are frequent symptoms in patients with Parkinson’s disease (PD). The pathology of Lewy bodies in colonic and rectal cholinergic neurons suggests that cholinergic pathways are involved in colorectal dysmotility in PD. However, the underlying mechanism is unclear. The aim of the present study is to examine the effect of central dopaminergic denervation in rats, induced by injection 6-hydroxydopamine into the bilateral substania nigra (6-OHDA rats), on colorectal contractive activity, content of acetylcholine (ACh), vasoactive intestinal peptide (VIP) and expression of neural nitric oxide synthase (nNOS) and muscarinic receptor (MR). Strain gauge force transducers combined with electrical field stimulation (EFS), gut transit time, immunohistochemistry, ELISA, western blot and ultraperformance liquid chromatography tandem mass spectrometry were used in this study. The 6-OHDA rats exhibited outlet obstruction constipation characterized by prolonged transit time, enhanced contractive tension and fecal retention in colorectum. Pretreatment with tetrodotoxin significantly increased the colorectal motility. EFS-induced cholinergic contractions were diminished in the colorectum. Bethanechol chloride promoted colorectal motility in a dose-dependent manner, and much stronger reactivity of bethanechol chloride was observed in 6-OHDA rats. The ACh, VIP and protein expression of nNOS was decreased, but M2R and M3R were notably upregulated in colorectal muscularis externa. Moreover, the number of cholinergic neurons was reduced in sacral parasympathetic nucleus (SPN) of 6-OHDA rats. In conclusion, central nigrostriatal dopaminergic denervation is associated with decreased cholinergic neurons in SPN, decreased ACh, VIP content, and nNOS expression and upregulated M2R and M3R in colorectum, resulting in colorectal dysmotility, which contributes to outlet obstruction constipation. The study provides new insights into the mechanism of constipation and potential therapeutic targets for constipation in PD patients.


2021 ◽  
Author(s):  
Bolaji P Enivaye ◽  
Victoria Booth ◽  
Anthony G Hudetz ◽  
Michal Zochowski

General anesthetics work through a variety of molecular mechanisms while resulting in the common end point of sedation and loss of consciousness. Generally, the administration of common inhalation anesthetics induces decreases in synaptic excitation while promoting synaptic inhibition. Animal studies have shown that, during anesthesia, exogenously induced increases in acetylcholine-mediated effects in the brain can elicit wakeful-like behavior despite the continued presence of the anesthetic. Less investigated, however, is the question of whether the brain's electrophysiological activity is also restored to pre-anesthetic levels and quality by such interventions. Here we apply a computational model of a network composed of excitatory and inhibitory neurons to simulate the network effects of changes in synaptic inhibition and excitation due to anesthesia and its reversal by muscarinic receptor-mediated cholinergic effects. We use a differential evolution algorithm to fit model parameters to match measures of spiking activity, neuronal connectivity, and network dynamics recorded in the visual cortex of rodents during anesthesia with desflurane in vivo. We find that facilitating muscarinic receptor effects of acetylcholine on top of anesthetic-induced synaptic changes predicts reversal of the neurons’ spiking activity, functional connectivity, as well as pairwise and population interactions. Thus, our model results predict a possible neuronal mechanism for the induced reversal of the effects of anesthesia on post synaptic potentials, consistent with experimental behavioral observations.


2021 ◽  
Vol 22 (23) ◽  
pp. 13153
Author(s):  
Alyssa Schledwitz ◽  
Margaret H. Sundel ◽  
Madeline Alizadeh ◽  
Shien Hu ◽  
Guofeng Xie ◽  
...  

Cancers arising from gastrointestinal epithelial cells are common, aggressive, and difficult to treat. Progress in this area resulted from recognizing that the biological behavior of these cancers is highly dependent on bioactive molecules released by neurocrine, paracrine, and autocrine mechanisms within the tumor microenvironment. For many decades after its discovery as a neurotransmitter, acetylcholine was thought to be synthesized and released uniquely from neurons and considered the sole physiological ligand for muscarinic receptor subtypes, which were believed to have similar or redundant actions. In the intervening years, we learned this former dogma is not tenable. (1) Acetylcholine is not produced and released only by neurons. The cellular machinery required to synthesize and release acetylcholine is present in immune, cancer, and other cells, as well as in lower organisms (e.g., bacteria) that inhabit the gut. (2) Acetylcholine is not the sole physiological activator of muscarinic receptors. For example, selected bile acids can modulate muscarinic receptor function. (3) Muscarinic receptor subtypes anticipated to have overlapping functions based on similar G protein coupling and downstream signaling may have unexpectedly diverse actions. Here, we review the relevant research findings supporting these conclusions and discuss how the complexity of muscarinic receptor biology impacts health and disease, focusing on their role in the initiation and progression of gastric, pancreatic, and colon cancers.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Eyal Rozenfeld ◽  
Merav Tauber ◽  
Yair Ben-Chaim ◽  
Moshe Parnas

AbstractG-protein coupled receptors (GPCRs) play a paramount role in diverse brain functions. Almost 20 years ago, GPCR activity was shown to be regulated by membrane potential in vitro, but whether the voltage dependence of GPCRs contributes to neuronal coding and behavioral output under physiological conditions in vivo has never been demonstrated. Here we show that muscarinic GPCR mediated neuronal potentiation in vivo is voltage dependent. This voltage dependent potentiation is abolished in mutant animals expressing a voltage independent receptor. Depolarization alone, without a muscarinic agonist, results in a nicotinic ionotropic receptor potentiation that is mediated by muscarinic receptor voltage dependency. Finally, muscarinic receptor voltage independence causes a strong behavioral effect of increased odor habituation. Together, this study identifies a physiological role for the voltage dependency of GPCRs by demonstrating crucial involvement of GPCR voltage dependence in neuronal plasticity and behavior. Thus, this study suggests that GPCR voltage dependency plays a role in many diverse neuronal functions including learning and memory.


2021 ◽  
Vol 105 (12S1) ◽  
pp. S43-S43
Author(s):  
Anja Steffen ◽  
Natascha de Graaf ◽  
Marten Engelse ◽  
Eelco de Koning

2021 ◽  
Vol 20 (3) ◽  
pp. 88-94
Author(s):  
E. S. Prokudina ◽  
L. N. Maslov ◽  
N. V. Naryzhnaya ◽  
B. K. Kurbatov ◽  
A. V. Mukhomedzyanov ◽  
...  

 Aim. To identify the role of the autonomic nervous system in stress cardiomyopathy in an experimental model of Takotsubo syndrome.Materials and methods. The study was carried out on 120 female Wistar rats. Stress modeling was performed by immobilizing animals on the back for 24 hours. Intact rats were used as controls. The rats were decapitated after termination of immobilization under general anesthesia with ether. Stress cardiomyopathy (SCM) was quantified by accumulation of 99mTc pyrophosphate radiopharmaceutical (99mTc PP) in the myocardium. The pharmacological agents used included the ganglionic blocker hexamethonium, administered five times at a dose of 20 mg / kg; guanethidine (50 mg / kg) administered subcutaneously once a day for three days, the last injection was performed 24 hours before immobilization; the muscarinic receptor antagonist atropine methyl nitrate (1 mg / kg); the α1-AR (adrenergic receptor) antagonist prazosin (2 mg / kg); the α2-AR antagonist yohimbine, administered at a dose of 2 mg / kg; the β1-AR antagonist nebivolol (1.2 mg / kg); the β2-AR antagonist ICI 118,551 (0.3 mg / kg); and the β3-AR antagonist L-748337 (0.1 mg / kg).Results. Three-day administration of guanethidine caused a decrease in the degree of 99mTc-PP accumulation in the heart by 35.9%. Hexamethonium did not affect the degree of SCM. The blockade of the muscarinic receptor caused an increase in accumulation of 99mTc-PP by 26.5%. Inhibition of α1-AR did not affect SCM. The blockade of α2-AR caused a 2.2-fold increase in the accumulation compared with stress control. The blockade of β1-AR reduced 99mTc-PP accumulation by 2.5 times. The blockade of β2-AR by ICI 118,551 increased the degree of 99mTcPP accumulation by 34.6%. Inhibition of β3-AR had no effect on SCM.Conclusion. The adrenergic system and β1-adrenergic receptor play an important role in the development of SCM. The parasympathetic nervous system ensures resistance of the heart to stress.


2021 ◽  
Vol 429 ◽  
pp. 117831
Author(s):  
Claudia Carrarini ◽  
Mirella Russo ◽  
Marcella Reale ◽  
Fedele Dono ◽  
Laura Ferri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document