scholarly journals The microsporidian spore invasion tube. The ultrastructure, isolation, and characterization of the protein comprising the tube.

1976 ◽  
Vol 71 (1) ◽  
pp. 23-34 ◽  
Author(s):  
E Weidner

The extrusion apparatus of the microsporidian parasitic protozoan Nosema michaelis discharges an invasion (or polar) tube with a velocity suitalbe for piercing cells and injecting infective sporoplasm. The tube is composed of a polar tube protein (PTP) which consists of a single, low molecular weight polypeptide slightly smaller than chymotrypsinogen-A. Assembled PTP tubes resist dissociation in sodium dodecyl sulfate and brief exposures in media at extreme ends of the pH range; however, the tubes are reduced by mercaptoethanol and dithiothreitol. When acidified, mercaptoethanol-reduced PTP self-assembles into plastic, two-dimensional monolayers. Dithiothreitol-reduced PTP will not reassemble when acidified. Evidence is presented which indicates that PTP is assembled as a tube within the spore; that the ejected tube has plasticity during sporoplasm passage; and, finally, that the subunits within the tube polymer are bound together, in part, by interprotein disulfide linkages.

1974 ◽  
Vol 31 (01) ◽  
pp. 072-085 ◽  
Author(s):  
M Kopitar ◽  
M Stegnar ◽  
B Accetto ◽  
D Lebez

SummaryPlasminogen activator was isolated from disrupted pig leucocytes by the aid of DEAE chromatography, gel filtration on Sephadex G-100 and final purification on CM cellulose, or by preparative gel electrophoresis.Isolated plasminogen activator corresponds No. 3 band of the starting sample of leucocyte cells (that is composed from 10 gel electrophoretic bands).pH optimum was found to be in pH range 8.0–8.5 and the highest pH stability is between pH range 5.0–8.0.Inhibition studies of isolated plasminogen activator were performed with EACA, AMCHA, PAMBA and Trasylol, using Anson and Astrup method. By Astrup method 100% inhibition was found with EACA and Trasylol and 30% with AMCHA. PAMBA gave 60% inhibition already at concentration 10–3 M/ml. Molecular weight of plasminogen activator was determined by gel filtration on Sephadex G-100. The value obtained from 4 different samples was found to be 28000–30500.


1975 ◽  
Author(s):  
D. S. Pepper ◽  
S. Moore ◽  
J. D. Cash

The thrombin released products from washed human platelets were separated by filtration on 4% agarose in 0.15 M NaCl. The high molecular weight PF4 complex was dissociated and re-chromatographed in 0.75 M NaCl. The low molecular weight fraction, including β thromboglobulin and a low MW anti-heparin was freed of plasminogen anti-activator by dissociation and chromatography in pH 3.5 pyridine acetic acid. The anti-activator was irreversibly denatured and albumin was removed in the void volume of the column. A more suitable purification procedure for recovery of all activities was affinity chromatography on heparin-agarose. The anti-activator was excluded and could be obtained free of plasma proteins by Sephadex G-200 chromatography. The βTG eluted at 0.3 M NaCl and the low MW anti-heparin at 1.5 M NaCl. The pure βTG (MW 36,000) was injected into rabbits and the resulting antiserum used to produce a radioimmunoassay for the release reaction in vivo.


Life Sciences ◽  
1987 ◽  
Vol 41 (3) ◽  
pp. 297-304 ◽  
Author(s):  
M.H. Heulin ◽  
J. Rajoelina ◽  
M. Artur ◽  
C. Geschier ◽  
J. Straczek ◽  
...  

2006 ◽  
Vol 1764 (5) ◽  
pp. 863-871 ◽  
Author(s):  
Yotis A. Senis ◽  
Paul Y. Kim ◽  
Gemma L.J. Fuller ◽  
Ángel García ◽  
Sripadi Prabhakar ◽  
...  

1975 ◽  
Vol 53 (11) ◽  
pp. 1207-1213 ◽  
Author(s):  
L. D. Burtnick ◽  
W. D. McCubbin ◽  
C. M. Kay

The inhibitory component of the troponin complex (TN-I) was purified from bovine cardiac muscle, using a combination of ion exchange and molecular exclusion chromatographies in the presence of urea. It has the ability to inhibit the Mg2+-activated ATPase (EC 3.6.1.3) of a synthetic cardiac actomyosin preparation and this inhibition is reversed by the addition of cardiac calcium binding component of troponin (TN-C). Conventional sedimentation equilibrium experiments suggest a molecular weight for cardiac TN-I of 22 900 ± 500. However, sodium dodecyl sulfate (SDS) gels indicate a molecular weight of 27 000 ± 1000. The mobility of TN-I on SDS gels may be anomalous due to the high proportion of basic amino acid residues in the protein. Cardiac TN-I and TN-C interact to form a tight complex, even in the presence of 6 M urea. The results of this study invite direct comparison with results published for rabbit skeletal TN-I.


Sign in / Sign up

Export Citation Format

Share Document