scholarly journals High-resolution mapping of serovar-specific and common antigenic determinants of the major outer membrane protein of Chlamydia trachomatis.

1988 ◽  
Vol 167 (3) ◽  
pp. 817-831 ◽  
Author(s):  
R S Stephens ◽  
E A Wagar ◽  
G K Schoolnik

The principal surface protein antigen of Chlamydia trachomatis is the major outer membrane protein (MOMP). The MOMP is antigenically complex. Among the 15 serovars of C. trachomatis, mAbs define serovar-, subspecies-, and species-specific determinants on MOMP. The molecular basis of the antigenic diversity of these proteins is reflected in amino acid variable sequence domains. We have mapped the dominant topographic antigenic determinants of MOMP that are defined by mAbs. Using recombinant DNA approaches we have identified the linear distribution of two antigenic domains. One domain contains a serovar-specific determinant and the other contains subspecies- and species-specific determinants. These antigenic domains correspond to two amino acid sequence variable domains. Synthetic peptides were immunogenic and these resolved the serovar-specific determinant within a 14-amino acid peptide. The subspecies- and species-specific determinants were overlapping within a 16-amino acid peptide.

2001 ◽  
Vol 69 (5) ◽  
pp. 3082-3091 ◽  
Author(s):  
Katerina Wolf ◽  
Elizabeth Fischer ◽  
David Mead ◽  
Guangming Zhong ◽  
Roseanna Peeling ◽  
...  

ABSTRACT The major outer membrane protein (MOMP) of Chlamydia trachomatis serovariants is known to be an immunodominant surface antigen. Moreover, it is known that the C. trachomatis MOMP elicits antibodies that recognize both linear and conformational antigenic determinants. In contrast, it has been reported that the MOMP of Chlamydia pneumoniae is not surface exposed and is immunorecessive. We hypothesized that the discrepancies betweenC. trachomatis and C. pneumoniae MOMP exposure on intact chlamydiae and immunogenic properties might be because the focus of the host's immune response is directed to conformational epitopes of the C. pneumoniae MOMP. We therefore conducted studies aimed at defining the surface exposure of MOMP and the conformational dominance of MOMP antibodies. We present here a description of C. pneumoniaespecies-specific monoclonal antibody (MAb), GZD1E8, which recognizes a conformational epitope on the surface of C. pneumoniae. This MAb is potent in the neutralization ofC. pneumoniae infectivity in vitro. Another previously described C. pneumoniaespecies-specific monoclonal antibody, RR-402, displayed very similar characteristics. However, the antigenic determinant recognized by RR-402 has yet to be identified. We show by immunoprecipitation ofC. pneumoniae with GZD1E8 and RR-402 MAbs and by mass spectrometry analysis of immunoprecipitated proteins that both antibodies GZD1E8 and RR-402 recognize the MOMP of C. pneumoniae and that this protein is localized on the surface of the organism. We also show that human sera fromC. pneumoniae-positive donors consistently recognize the MOMP by immunoprecipitation, indicating that the MOMP ofC. pneumoniae is an immunogenic protein. These findings have potential implications for both C. pneumoniae vaccine and diagnostic assay development.


Sign in / Sign up

Export Citation Format

Share Document