scholarly journals Class I molecules retained in the endoplasmic reticulum bind antigenic peptides.

1993 ◽  
Vol 177 (6) ◽  
pp. 1633-1641 ◽  
Author(s):  
C K Lapham ◽  
I Bacík ◽  
J W Yewdell ◽  
K P Kane ◽  
J R Bennink

We isolated major histocompatibility complex (MHC)-specific viral peptides from cells infected with influenza virus in the continuous presence of the drug brefeldin A, which blocks exocytosis of newly synthesized MHC class I molecules. MHC-specific peptides were also isolated from cells expressing mouse Kd class I MHC molecules whose cytoplasmic domain was substituted by that of the adenovirus E3/19K glycoprotein. This molecule was retained in an intracellular pre-Golgi complex compartment as demonstrated by immunocytochemical and biochemical means. Since we show that intracellular association of antigenic peptides with such retained class I molecules is necessary for their isolation from cellular extracts, this provides direct evidence that naturally processed peptides associate with class I MHC molecules in an early intracellular exocytic compartment.

2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


1993 ◽  
Vol 177 (1) ◽  
pp. 201-205 ◽  
Author(s):  
L Franksson ◽  
E George ◽  
S Powis ◽  
G Butcher ◽  
J Howard ◽  
...  

Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules requires MHC-encoded molecules of the adenosine triphosphate binding cassette (ABC) family. Defects in these proteins represent a potential risk, since they are essential links in the machinery of T cell-mediated surveillance which continuously scrutinizes peptide samples of cellular proteins. Nevertheless, transfection of the mouse lymphoma mutant RMA-S with the rat ABC gene mtp2a (homologue to mouse HAM2 and human RING11), commonly termed TAP-2 genes, led to a marked increase in tumor outgrowth potential in vivo. This occurred despite restored antigen presentation and sensitivity to cytotoxic T lymphocytes, and was found to be due to escape from natural killer (NK) cell-mediated rejection. It has previously been proposed that adequate expression of self-MHC class I is one important mechanism to avoid elimination by NK cells. Our data argue that a defect in the machinery responsible for processing and loading of peptides into MHC class I molecules is sufficient to render cells sensitive to elimination by NK cells. The latter thus appear to function as a surveillance of the peptide surveillance machinery.


2020 ◽  
Author(s):  
Xizheng Sun ◽  
Reika Tokunaga ◽  
Yoko Nagai ◽  
Ryo Miyahara ◽  
Akihiro Kishimura ◽  
...  

<p><a></a><a></a><a>We have validated that ligand peptides designed from antigen peptides could be used for targeting specific major histocompatibility complex class I (MHC-I)</a> molecules on cell surface. To design the ligand peptides, we used reported antigen peptides for each MHC-I molecule with high binding affinity. From the crystal structure of the peptide/MHC-I complexes, we determined a modifiable residue in the antigen peptides and replaced this residue with a lysine with an ε-amine group modified with functional molecules. The designed ligand peptides successfully bound to cells expressing the corresponding MHC-I molecules via exchange of peptides bound to the MHC-I. We demonstrated that the peptide ligands could be used to transport a protein or a liposome to cells expressing the corresponding MHC-I. The present strategy may be useful for targeted delivery to cells overexpressing MHC-I, which have been observed autoimmune diseases.</p>


1997 ◽  
Vol 8 (1) ◽  
pp. 47-57 ◽  
Author(s):  
E Stang ◽  
J Kartenbeck ◽  
R G Parton

Simian virus 40 (SV40) has been shown to enter mammalian cells via uncoated plasma membrane invaginations. Viral particles subsequently appear within the endoplasmic reticulum. In the present study, we have examined the surface binding and internalization of SV40 by immunoelectron microscopy. We show that SV40 associates with surface pits which have the characteristics of caveolae and are labeled with antibodies to the caveolar marker protein, caveolin-1. SV40 is believed to use major histocompatibility complex (MHC) class I molecules as cell surface receptors. Using a number of MHC class I-specific monoclonal antibodies, we found that both viral infection and association of virus with caveolae were strongly reduced by preincubation with anti-MHC class I antibodies. Because binding of SV40 to MHC class I molecules may induce clustering, we investigated whether antibody cross-linked class I molecules also redistributed to caveolae. Clusters of MHC class I molecules were indeed shown to be specifically associated with caveolin-labeled surface pits. Taken together, the results suggest that SV40 may make use of MHC class I molecule clustering and the caveolae pathway to enter mammalian cells.


1993 ◽  
Vol 13 (3) ◽  
pp. 1554-1564
Author(s):  
A G Frauman ◽  
P Chu ◽  
L C Harrison

The overexpression of major histocompatibility complex (MHC) class I molecules in endocrine epithelial cells is an early feature of autoimmune thyroid disease and insulin-dependent diabetes mellitus, which may reflect a cellular response, e.g., to viruses or toxins. Evidence from a transgenic model in pancreatic beta cells suggests that MHC class I overexpression could play an independent role in endocrine cell destruction. We demonstrate in this study that the transgenic overexpression of an allogeneic MHC class I protein (H-2Kb) linked to the rat thyroglobulin promoter, in H-2Kk mice homozygous for the transgene, leads to thyrocyte atrophy, hypothyroidism, growth retardation, and death. Thyrocyte atrophy occurred in the absence of lymphocytic infiltration. Tolerance to allogeneic class I was revealed by the reduced ability of primed lymphocytes from transgenic mice to lyse H-2Kb target cells in vitro. This nonimmune form of thyrocyte destruction and hypothyroidism recapitulates the beta-cell destruction and diabetes that results from transgenic overexpression of MHC class I molecules in pancreatic beta cells. Thus, we conclude that overexpression of MHC class I molecules may be a general mechanism that directly impairs endocrine epithelial cell viability.


1996 ◽  
Vol 183 (2) ◽  
pp. 527-534 ◽  
Author(s):  
J C Skipper ◽  
R C Hendrickson ◽  
P H Gulden ◽  
V Brichard ◽  
A Van Pel ◽  
...  

T lymphocytes recognize antigens consisting of peptides presented by class I and II major histocompatibility complex (MHC) molecules. The peptides identified so far have been predictable from the amino acid sequences of proteins. We have identified the natural peptide target of a CTL clone that recognizes the tyrosinase gene product on melanoma cells. The peptide results from posttranslational conversion of asparagine to aspartic acid. This change is of central importance for peptide recognition by melanoma-specific T cells, but has no impact on peptide binding to the MHC molecule. This posttranslational modification has not been previously described for any MHC-associated peptide and represents the first demonstration of posttranslational modification of a naturally processed class I-associated peptide. This observation is relevant to the identification and prediction of potential peptide antigens. The most likely mechanism for production of this peptide leads to the suggestion that antigenic peptides can be derived from proteins that are translated into the endoplasmic reticulum.


1998 ◽  
Vol 72 (1) ◽  
pp. 460-466 ◽  
Author(s):  
Tara L. Chapman ◽  
Pamela J. Bjorkman

ABSTRACT Both human and murine cytomegaloviruses (HCMV and MCMV) down-regulate expression of conventional class I major histocompatibility complex (MHC) molecules at the surfaces of infected cells. This allows the infected cells to evade recognition by cytotoxic T cells but leaves them susceptible to natural killer cells, which lyse cells that lack class I molecules. Both HCMV and MCMV encode class I MHC heavy-chain homologs that may function in immune response evasion. We previously showed that a soluble form of the HCMV class I homolog (UL18) expressed in Chinese hamster ovary cells binds the class I MHC light-chain β2-microglobulin and a mixture of endogenous peptides (M. L. Fahnestock, J. L. Johnson, R. M. R. Feldman, J. M. Neveu, W. S. Lane, and P. J. Bjorkman, Immunity 3:583–590, 1995). Consistent with this observation, sequence comparisons suggest that UL18 contains the well-characterized groove that serves as the binding site in MHC molecules for peptides derived from endogenous and foreign proteins. By contrast, the MCMV homolog (m144) contains a substantial deletion within the counterpart of its α2 domain and might not be expected to contain a groove capable of binding peptides. We have now expressed a soluble version of m144 and verified that it forms a heavy chain–β2-microglobulin complex. By contrast to UL18 and classical class I MHC molecules, m144 does not associate with endogenous peptides yet is thermally stable. These results suggest that UL18 and m144 differ structurally and might therefore serve different functions for their respective viruses.


2011 ◽  
Vol 63 (12) ◽  
pp. 821-834 ◽  
Author(s):  
Lasse Eggers Pedersen ◽  
Mikkel Harndahl ◽  
Michael Rasmussen ◽  
Kasper Lamberth ◽  
William T. Golde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document