mhc class i molecule
Recently Published Documents


TOTAL DOCUMENTS

157
(FIVE YEARS 12)

H-INDEX

36
(FIVE YEARS 1)

2021 ◽  
Vol 118 (51) ◽  
pp. e2108104118
Author(s):  
Kazuhiko Okamura ◽  
Johannes M. Dijkstra ◽  
Kentaro Tsukamoto ◽  
Unni Grimholt ◽  
Geert F. Wiegertjes ◽  
...  

Two classes of major histocompatibility complex (MHC) molecules, MHC class I and class II, play important roles in our immune system, presenting antigens to functionally distinct T lymphocyte populations. However, the origin of this essential MHC class divergence is poorly understood. Here, we discovered a category of MHC molecules (W-category) in the most primitive jawed vertebrates, cartilaginous fish, and also in bony fish and tetrapods. W-category, surprisingly, possesses class II–type α- and β-chain organization together with class I–specific sequence motifs for interdomain binding, and the W-category α2 domain shows unprecedented, phylogenetic similarity with β2-microglobulin of class I. Based on the results, we propose a model in which the ancestral MHC class I molecule evolved from class II–type W-category. The discovery of the ancient MHC group, W-category, sheds a light on the long-standing critical question of the MHC class divergence and suggests that class II type came first.


2021 ◽  
Vol 22 (24) ◽  
pp. 13348
Author(s):  
Monika Zaborek-Łyczba ◽  
Jakub Łyczba ◽  
Paulina Mertowska ◽  
Sebastian Mertowski ◽  
Anna Hymos ◽  
...  

The human G-leukocyte antigen (HLA-G) molecule is a non-classical major histocompatibility complex (MHC) class I molecule. The pertinence of HLA-G has been investigated in numerous studies which have sought to elucidate the relevance of HLA-G in pathologic conditions, such as autoimmune diseases, cancers, and hematologic malignancies. One of the main goals of the current research on HLA-G is to use this molecule in clinical practice, either in diagnostics or as a therapeutic target. Since HLA-G antigens are currently considered as immunomodulatory molecules that are involved in reducing inflammatory and immune responses, in this review, we decided to focus on this group of antigens as potential determinants of progression in autoimmune diseases. This article highlights what we consider as recent pivotal findings on the immunomodulatory function of HLA-G, not only to establish the role of HLA-G in the human body, but also to explain how these proteins mediate the immune response.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peilong Li ◽  
Nan Wang ◽  
Yi Zhang ◽  
Chuanxin Wang ◽  
Lutao Du

As a non-classic major histocompatibility complex (MHC) class I molecule, human leukocyte antigen G (HLA-G) is expressed in fetal-maternal interface and immunoprivileged site only in healthy condition, and in pathological conditions such as cancer, it can be de novo expressed. It is now widely accepted that HLA-G is a key molecule in the process of immune escape of cancer cells, which is ubiquitously expressed in the tumor environment. This raises the possibility that it may play an adverse role in tumor immunity. The expression level of HLA-G has been demonstrated to be highly correlated with clinical parameters in many tumors, and its potential significance in the diagnosis and prognosis of cancer has been postulated. However, because HLA-G itself has up to seven different subtypes, and for some subtypes, detected antibodies are few or absent, it is hard to evaluate the actual expression of HLA-G in tumors. In the present work, we described (a) the structure and three main forms of HLA-G, (b) summarized the mechanism of HLA-G in the immune escape of tumor cells, (c) discussed the potential role of HLA-G as a tumor marker, and reviewed (d) the methods for detecting and quantifying HLA-G.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 897
Author(s):  
Maria Cristina Munteanu ◽  
Nandhini Sethuraman ◽  
Mohit Singh ◽  
Jerry Malayer ◽  
Ashish Ranjan

FENDRR (Fetal-lethal non-coding developmental regulatory RNA, LncRNA FOXF1-AS1) is a recently identified tumor suppressor long non-coding (LncRNA) RNA, and its expression has been linked with epigenetic modulation of the target genes involved in tumor immunity. In this study, we aimed to understand the role of FENDRR in predicting immune-responsiveness and the inflammatory tumor environment. Briefly, FENDRR expression and its relationship to immune activation signals were assessed in murine cell lines. Data suggested that tumor cells (e.g., C26 colon, 4T1 breast) that typically upregulate immune activation genes and the MHC class I molecule exhibited high FENDRR expression levels. Conversely, tumor cells with a generalized downregulation of immune-related gene expression (e.g., B16F10 melanoma) demonstrated low to undetectable FENDRR levels. Mechanistically, the modulation of FENDRR expression enhanced the inflammatory and WNT signaling pathways in tumors. Our early data suggest that FENDRR can play an important role in the development of immune-relevant phenotypes in tumors, and thereby improve cancer immunotherapy.


2021 ◽  
Author(s):  
Xiaoxiao Jin ◽  
Ding Yan ◽  
Sun Shihui ◽  
Xinyi Wang ◽  
Zining Zhou ◽  
...  

AbstractWhile SARS-CoV-2-specific T cells have been characterized to play essential roles in host immune protection in COVID-19 patients, few researches focus on the functional validation of T cell epitopes and development of vaccines inducing specific T cell responses. In this study, 120 CD8+ T cell epitopes from E, M, N, S and RdRp proteins of SARS-CoV-2 were validated by on-silicon prediction, DC-peptide-PBL costimulation with healthy donors’ PBMCs and HLA-A molecule competitive binding experiments. Among them, 110, 15, 6, 14 and 12 epitopes were highly homologous with SARS-CoV, OC43, NL63, HKU1, and 229E, respectively. Thirty-one epitopes restricted by HLA-A2 molecule were used to generate peptide cocktail vaccines in combination with Poly(I:C), R848 or polylactic-co-glycolic acid nanoparticles, which elicited robust specific CD8+ T cell responses in wild-type and HLA-A2/DR1 transgenic mice. Seven of the 31 epitopes were found to be cross-presented by HLA-A2 and H-2K/Db molecules. These data have provided a library of SARS-CoV-2 CD8+ T cell epitopes which restricted by a series of high-frequency HLA-A allotypes and covered broad population in Asia, and initially confirmed the feasibility of human MHC class I molecule-restricted SARS-CoV2 epitope peptide cocktail vaccines, thus will facilitate the development of T cell epitope vaccines and specific cellular function detection kits.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jenna Kropp Schmidt ◽  
Logan T. Keding ◽  
Lindsey N. Block ◽  
Gregory J. Wiepz ◽  
Michelle R. Koenig ◽  
...  

Abstract Nonhuman primates are excellent models for studying human placentation as experimental manipulations in vitro can be translated to in vivo pregnancy. Our objective was to develop macaque trophoblast stem cells (TSCs) as an in vitro platform for future assessment of primate trophoblast development and function. Macaque TSC lines were generated by isolating first and second trimester placental villous cytotrophoblasts followed by culture in TSC medium to maintain cellular proliferation. TSCs grew as mononuclear colonies, whereas upon induction of syncytiotrophoblast (ST) differentiation multinuclear structures appeared, indicative of syncytium formation. Chorionic gonadotropin secretion was > 4000-fold higher in ST culture media compared to TSC media. The secretion of chorionic gonadotropin by TSC-derived ST reflects a reprogramming of macaque TSCs to an earlier pregnancy phenotype. Characteristic trophoblast hallmarks were defined in TSCs and ST including expression of C19MC miRNAs and the macaque placental nonclassical MHC class I molecule, Mamu-AG. Extravillous trophoblasts (EVTs) were derived that express macaque EVT markers Mamu-AG and CD56, and also secrete high levels of MMP2. Our analyses of macaque TSCs suggests that these cells represent a proliferative, self-renewing population capable of differentiating to STs and EVTs in vitro thereby establishing an experimental model of primate placentation.


2020 ◽  
Author(s):  
Victoria M Vorwald ◽  
Dana M Davis ◽  
Robert J Van Gulick ◽  
Robert J Torphy ◽  
Jessica S.W. Borgers ◽  
...  

While much of the research concerning factors associated with responses to immunotherapies focuses on the contributions of conventional peptide-specific T cells, the role of unconventional T cells, such as mucosal-associated invariant T (MAIT) cells, in human melanoma remains largely unknown. MAIT cells are innate-like T cells expressing a semi-invariant T cell receptor restricted to the non-classical MHC class I molecule MR1 presenting vitamin metabolites derived from bacteria. In this prospective clinical study, we sought to characterize MAIT cells in melanoma patients and determine their association with clinical outcomes. We identified tumor-infiltrating MAIT cells in melanomas across metastatic sites and found that the number of circulating MAIT cells is reduced in melanoma patients. However, circulating MAIT cell frequency is restored by anti-PD1 treatment in responding patients, correlating with treatment responses in which patients with high frequencies of MAIT cells exhibited improved overall survival. These data provide evidence for leveraging MAIT cells and their functions as novel targets for future therapies.


2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Qingxu Zhang ◽  
Kefang Liu ◽  
Can Yue ◽  
Di Zhang ◽  
Dan Lu ◽  
...  

ABSTRACT Rabbits are pivotal domestic animals for both the economy and as an animal model for human diseases. A large number of rabbits have been infected by rabbit hemorrhagic disease virus (RHDV) in natural and artificial pandemics in the past. Differences in presentation of antigenic peptides by polymorphic major histocompatibility complex (MHC) molecules to T-cell receptors (TCR) on T lymphocytes are associated with viral clearance in mammals. Here, we screened and identified a series of peptides derived from RHDV binding to the rabbit MHC class I molecule, RLA-A1. The small, hydrophobic B and F pockets of RLA-A1 capture a peptide motif analogous to that recognized by human class I molecule HLA-A*0201, with more restricted aliphatic anchors at P2 and PΩ positions. Moreover, the rabbit molecule is characterized by an uncommon residue combination of Gly53, Val55, and Glu56, making the 310 helix and the loop between the 310 and α1 helices closer to the α2 helix. A wider A pocket in RLA-A1 can induce a special conformation of the P1 anchor and may play a pivotal role in peptide assembly and TCR recognition. Our study broadens the knowledge of T-cell immunity in domestic animals and also provides useful insights for vaccine development to prevent infectious diseases in rabbits. IMPORTANCE We screened rabbit MHC class I RLA-A1-restricted peptides from the capsid protein VP60 of rabbit hemorrhagic disease virus (RHDV) and determined the structures of RLA-A1 complexed with three peptides, VP60-1, VP60-2, and VP60-10. From the structures, we found that the peptide binding motifs of RLA-A1 are extremely constraining. Thus, there is a generally restricted peptide selection for RLA-A1 compared to that for human HLA-A*0201. In addition, uncommon residues Gly53, Val55, and Glu56 of RLA-A1 are located between the 310 helix and α1 helix, which makes the steric position of the 310 helix in RLA-A1 much closer to the α2 helix than that found in other mammalian MHC class I molecules. This special conformation between the 310 helix and α1 helix plays a pivotal role in rabbit MHC class I assembly. Our results provide new insights into MHC class I molecule assembly and peptide presentation of domestic mammals. Furthermore, these data also broaden our knowledge on T-cell immunity in rabbits and may also provide useful information for vaccine development to prevent infectious diseases in rabbits.


2020 ◽  
Vol 4 (s1) ◽  
pp. 16-17
Author(s):  
Jesus Alonso ◽  
Nishant Singh ◽  
Jason Devlin ◽  
Lauren Davancaze ◽  
Brian Baker

OBJECTIVES/GOALS: Our goal is to employ a structure-guided design approach to engineering a safer and more effective variant of the TIL1383I T cell receptor (TCR) currently under study in clinical trials for malignant melanoma METHODS/STUDY POPULATION: Using our unpublished structure of TIL1383I we are in process of designing a panel of TCR variants with the goal of identifying candidates that improve “focus” towards the tyrosinase antigen presented on the MHC class I molecule HLA-A2. RESULTS/ANTICIPATED RESULTS: Structural analysis of TIL1383I revealed key residues, particularly beta-chain residues E97, G101, L102, responsible for engaging the tyrosinase peptide bound to HLA-A2. The crystal structure of TIL1383I in complex with tyrosinase-HLA-A2 also highlighted its uncharacteristic binding geometry and we therefore hypothesize that this binding orientation is associated with the observed CD8 co-receptor independence of TIL1383I. Indeed, functional analysis with TIL1383I-transduced CD8-positive and CD8-negative T cells, transduced T cells expressing a truncated CD8 lacking the intracellular LCK signaling domain, and tyrosinase peptide variants presented by HLA-A2 mutants outline this co-receptor independence. Combined with our interrogation of tyrosinase peptide cross-reactivity via a peptide positional scanning library approach, structure-guided design resulted in the identification of TIL1383I variants with improved binding affinities to the tyrosinase peptide as well as an understanding of structural characteristics that may contribute to TIL1383I’s co-receptor independence.


Sign in / Sign up

Export Citation Format

Share Document