scholarly journals Signaling via β2 Integrins Triggers Neutrophil-Dependent Alteration in Endothelial Barrier Function

2000 ◽  
Vol 191 (11) ◽  
pp. 1829-1840 ◽  
Author(s):  
Narinder Gautam ◽  
Heiko Herwald ◽  
Per Hedqvist ◽  
Lennart Lindbom

Activation of polymorphonuclear leukocytes (PMNs) and adhesion to the endothelial lining is a major cause of edema formation. Although known to be dependent on the function of β2 integrins (CD11/CD18), the precise mechanisms by which adherent PMNs may impair endothelial barrier capacity remain unclear. Here, the role of transmembrane signaling by β2 integrins in PMN-induced alterations in tight junctional permeability of cultured endothelial cell (EC) monolayers was investigated. PMN activation, in the absence of proinflammatory stimuli, was accomplished through antibody cross-linking of CD11b/CD18, mimicking adhesion-dependent receptor engagement. CD18 cross-linking in PMNs added to the EC monolayer provoked a prompt increase in EC permeability that coincided with a rise in EC cytosolic free Ca2+ and rearrangement of actin filaments, events similar to those evoked by chemoattractant PMN activation. Cell-free supernatant obtained after CD18 cross-linking in suspended PMNs triggered an EC response indistinguishable from that induced by direct PMN activation, and caused clear-cut venular plasma leakage when added to the hamster cheek pouch in vivo preparation. The PMN-evoked EC response was specific to β2 integrin engagement inasmuch as antibody cross-linking of l-selectin or CD44 was without effect on EC function. Our data demonstrate a causal link between outside-in signaling by β2 integrins and the capacity of PMNs to induce alterations in vascular permeability, and suggest a paracrine mechanism that involves PMN-derived cationic protein(s) in the cellular crosstalk between PMNs and ECs.

1998 ◽  
Vol 274 (1) ◽  
pp. H60-H65 ◽  
Author(s):  
Eugene D. McGahren ◽  
James M. Beach ◽  
Brian R. Duling

It has been proposed that capillaries can detect changes in tissue metabolites and generate signals that are communicated upstream to resistance vessels. The mechanism for this communication may involve changes in capillary endothelial cell membrane potentials which are then conducted to upstream arterioles. We have tested the capacity of capillary endothelial cells in vivo to respond to pharmacological stimuli. In a hamster cheek pouch preparation, capillary endothelial cells were labeled with the voltage-sensitive dye di-8-ANEPPS. Fluorescence from capillary segments (75–150 μm long) was excited at 475 nm and recorded at 560 and 620 nm with a dual-wavelength photomultiplier system. KCl was applied using pressure injection, and acetylcholine (ACh) and phenylephrine (PE) were applied iontophoretically to these capillaries. Changes in the ratio of the fluorescence emission at two emission wavelengths were used to estimate changes in the capillary endothelial membrane potential. Application of KCl resulted in depolarization, whereas application of the vehicle did not. Application of ACh and PE resulted in hyperpolarization and depolarization, respectively. The capillary responses could be blocked by including a receptor antagonist (atropine or prazosin, respectively) in the superfusate. We conclude that the capillary membrane potential is capable of responding to pharmacological stimuli. We hypothesize that capillaries can respond to changes in the milieu of surrounding tissue via changes in endothelial membrane potential.


1998 ◽  
Vol 274 (1) ◽  
pp. R237-R242
Author(s):  
Xiao-Pei Gao

The purpose of this study was to determine whether tannic acid elicits neurogenic plasma exudation from the oral mucosa in vivo and, if so, whether this response is transduced in part by thel-arginine-nitric oxide (NO) biosynthetic pathway. Using intravital microscopy, we found that suffusion of tannic acid elicits significant concentration-dependent leaky site formation and increase in clearance of fluorescein isothiocyanate-dextran (molecular mass 70 kDa) from the in situ hamster cheek pouch ( P < 0.05). These effects are significantly attenuated by two selective, but structurally distinct, nonpeptide neurokinin-1 (NK1) receptor antagonists, CP-96,345 and RP-67580, but not by CP-96,344, the 2R,3R enantiomer of CP-96,345. N G-nitrol-arginine methyl ester (l-NAME), an NO synthase inhibitor, but notd-NAME, significantly attenuates tannic acid-induced responses.l-Arginine, but notd-arginine, reverses the attenuating effects of l-NAME. We conclude that tannic acid elicitsl-arginine-NO biosynthetic pathway-dependent neurogenic plasma exudation from the in situ hamster cheek pouch.


1995 ◽  
Vol 78 (2) ◽  
pp. 562-568 ◽  
Author(s):  
X. P. Gao ◽  
I. Rubinstein

The purpose of this study was to investigate whether neutral endopeptidase (NEP; EC 3.4.24.11) modulates substance P-induced vasodilation in the oral mucosa in vivo. Using intravital microscopy, we measured the diameter of second-order arterioles (44–70 microns) in the hamster cheek pouch during suffusion of capsaicin and substance P. We found that capsaicin (0.1 and 10.0 nM) induced significant concentration-dependent vasodilations (13 +/- 4 and 39 +/- 7% increase from baseline, respectively; P < 0.05) that were significantly potentiated by phosphoramidon (10.0 nM), a selective NEP inhibitor (35 +/- 15 and 61 +/- 12% increase from baseline, respectively; P < 0.05). Substance P (0.1 and 10.0 nM) also induced significant concentration-dependent vasodilations (7 +/- 3 and 25 +/- 8% increase from baseline, respectively; P < 0.05) that were mediated by the COOH-terminal of the molecule. Substance P-induced responses were significantly potentiated by phosphoramidon (34 +/- 9 and 53 +/- 10% increase from baseline, respectively; P < 0.05) and thiorphan (10.0 microM), a selective NEP inhibitor (44 +/- 11 and 53 +/- 10% increase from baseline, respectively; P < 0.05). Substance P-(1–9) had no significant effects on arteriolar diameter. Suffusion of captopril, leupeptin, Bestatin, and DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid together had no significant effects on substance P-induced vasodilation. Phosphoramidon did not potentiate nitroglycerin-induced vasodilation. These data indicate that NEP modulates substance P-induced vasodilation in the hamster cheek pouch in vivo. We suggest that any decrease in tissue NEP activity may amplify neurogenic vasodilation in the oral mucosa.


1964 ◽  
Vol 206 (6) ◽  
pp. 1299-1303 ◽  
Author(s):  
Albert J. Roy ◽  
Peter B. Lambert ◽  
Howard A. Frank

The vascular bed of the hamster cheek pouch was observed in vivo under the microscope as a major artery within the field was occluded. Two changes were noted: 1) an alteration in pattern of blood flow and 2) the opening of previously unseen branches on each side of the ligature. Both responses were immediate and persisting. Besides providing for new flow patterns, the newly opened arterial branches preserve additional length of the ligated artery which becomes obliterated on each side of the ligature to the nearest open branch. Comparison of in vivo with postmortem observations indicated that latent and open branches of the artery under observation were about equal in number, and that about half of the latent branches opened in response to the ligation. Induced vasoconstriction delayed the opening of latent branches, cold prevented it. Priscoline opened all latent vessels, with or without arterial ligation. In connection with Burton's data on "critical closing pressure" of fine vessels, the ligation of a large artery appears to establish a "critical opening pressure" within latent branches.


1998 ◽  
Vol 275 (2) ◽  
pp. R588-R595
Author(s):  
Hiroyuki Ikezaki ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to determine whether vasoactive intestinal peptide (VIP) modulates vasoconstriction elicited by phenylephrine and ANG II in vivo and, if so, to begin to elucidate the mechanisms underlying this phenomenon. Using intravital microscopy, we found that suffusion of phenylephrine and ANG II elicits significant vasoconstriction in the in situ hamster cheek pouch that is potentiated by VIP-(10—28), a VIP receptor antagonist, but not by VIP-(1—12) ( P< 0.05). Aqueous VIP has no significant effects on phenylephrine- and ANG II-induced vasoconstriction. However, VIP on sterically stabilized liposomes (SSL), a formulation where VIP assumes a predominantly α-helix conformation, significantly attenuates this response. Maximal effect is observed within 30 min and is no longer seen after 60 min. Empty SSL are inactive. Indomethacin has no significant effects on responses induced by VIP on SSL. The vasodilators ACh, nitroglycerin, calcium ionophore A-23187, 8-bromo-cAMP, and isoproterenol have no significant effects on phenylephrine- and ANG II-induced vasoconstriction. Collectively, these data suggest that vasoconstriction modulates VIP release in the in situ hamster cheek pouch and that α-helix VIP opposes α-adrenergic- and ANG II-induced vasoconstriction in this organ in a reversible, prostaglandin-, NO-, cGMP-, and cAMP-independent fashion.


2001 ◽  
Vol 280 (3) ◽  
pp. H1222-H1231 ◽  
Author(s):  
X. F. Figueroa ◽  
A. D. Martínez ◽  
D. R. González ◽  
P. I. Jara ◽  
S. Ayala ◽  
...  

To assess the hypothesis that microvascular nitric oxide (NO) is critical to maintain blood flow and solute exchange, we quantified NO production in the hamster cheek pouch in vivo, correlating it with vascular dynamics. Hamsters (100–120 g) were anesthetized and prepared for measurement of microvessel diameters by intravital microscopy, of plasma flow by isotopic sodium clearance, and of NO production by chemiluminescence. Analysis of endothelial NO synthase (eNOS) location by immunocytochemistry and subcellular fractionation revealed that eNOS was present in arterioles and venules and was 67 ± 7% membrane bound. Basal NO release was 60.1 ± 5.1 pM/min ( n = 35), and plasma flow was 2.95 ± 0.27 μl/min ( n = 29). Local NO synthase inhibition with 30 μM N ω-nitro-l-arginine reduced NO production to 8.6 ± 2.6 pmol/min (−83 ± 5%, n = 9) and plasma flow to 1.95 ± 0.15 μl/min (−28 ± 12%, n = 17) within 30–45 min, in parallel with constriction of arterioles (9–14%) and venules (19–25%). The effects of N ω-nitro-l-arginine (10–30 μM) were proportional to basal microvascular conductance ( r = 0.7, P < 0.05) and fully prevented by 1 mM l-arginine. We conclude that in this tissue, NO production contributes to 35–50% of resting microvascular conductance and plasma-tissue exchange.


1999 ◽  
Vol 276 (5) ◽  
pp. R1359-R1365 ◽  
Author(s):  
Hiroyuki Ikezaki ◽  
Manisha Patel ◽  
Hayat Önyüksel ◽  
Syed R. Akhter ◽  
Xiao-Pei Gao ◽  
...  

The purpose of this study was to determine whether exogenous calmodulin potentiates vasoactive intestinal peptide (VIP)-induced vasodilation in vivo and, if so, whether this response is amplified by association of VIP with sterically stabilized liposomes. Using intravital microscopy, we found that calmodulin suffused together with aqueous and liposomal VIP did not potentiate vasodilation elicited by VIP in the in situ hamster cheek pouch. However, preincubation of calmodulin with liposomal, but not aqueous, VIP for 1 and 2 h and overnight at 4°C before suffusion significantly potentiated vasodilation ( P < 0.05). Calmodulin-induced responses were significantly attenuated by calmidazolium, trifluoperazine, and N G-nitro-l-arginine methyl ester (l-NAME) but notd-NAME. The effects ofl-NAME were reversed byl- but notd-arginine. Indomethacin had no significant effects on calmodulin-induced responses. Calmodulin had no significant effects on adenosine-, isoproterenol-, acetylcholine-, and calcium ionophore A-23187-induced vasodilation. Collectively, these data indicate that exogenous calmodulin amplifies vasodilation elicited by phospholipid-associated, but not aqueous, VIP in the in situ peripheral microcirculation in a specific, calmodulin active sites-, and nitric oxide-dependent fashion. We suggest that extracellular calmodulin, phospholipids, and VIP form a novel functionally coordinated class of endogenous vasodilators.


2000 ◽  
Vol 278 (6) ◽  
pp. H1832-H1839 ◽  
Author(s):  
Donald G. Welsh ◽  
Steven S. Segal

We tested whether local and conducted responses to ACh depend on factors released from endothelial cells (EC) in cheek pouch arterioles of anesthetized hamsters. ACh was delivered from a micropipette (1 s, 500 nA), while arteriolar diameter (rest, ∼40 μm) was monitored at the site of application (local) and at 520 and 1,040 μm upstream (conducted). Under control conditions, ACh elicited local (22–65 μm) and conducted (14–44 μm) vasodilation. Indomethacin (10 μM) had no effect, whereas N ω-nitro-l-arginine (100 μM) reduced local and conducted vasodilation by 5–8% ( P < 0.05). Miconazole (10 μM) or 17-octadecynoic acid (17-ODYA; 10 μM) diminished local vasodilation by 15–20% and conducted responses by 50–70% ( P < 0.05), suggesting a role for cytochrome P-450 (CYP) metabolites in arteriolar responses to ACh. Membrane potential ( E m) was recorded in smooth muscle cells (SMC) and in EC identified with dye labeling. At rest (control E m, typically −30 mV), ACh evoked local (15–32 mV) and conducted (6–31 mV) hyperpolarizations in SMC and EC. Miconazole inhibited SMC and EC hyperpolarization, whereas 17-ODYA inhibited hyperpolarization of SMC but not of EC. Findings indicate that ACh-induced release of CYP metabolites from arteriolar EC evoke SMC hyperpolarization that contributes substantively to conducted vasodilation.


Sign in / Sign up

Export Citation Format

Share Document