scholarly journals Acquisition of External Major Histocompatibility Complex Class I Molecules by Natural Killer Cells Expressing Inhibitory Ly49 Receptors

2001 ◽  
Vol 194 (10) ◽  
pp. 1519-1530 ◽  
Author(s):  
Anna Sjöström ◽  
Mikael Eriksson ◽  
Cristina Cerboni ◽  
Maria H. Johansson ◽  
Charles L. Sentman ◽  
...  

Murine natural killer (NK) cells express inhibitory Ly49 receptors specific for major histocompatibility complex (MHC) class I molecules. We report that during interactions with cells in the environment, NK cells acquired MHC class I ligands from surrounding cells in a Ly49-specific fashion and displayed them at the cell surface. Ligand acquisition sometimes reached 20% of the MHC class I expression on surrounding cells, involved transfer of the entire MHC class I protein to the NK cell, and was independent of whether or not the NK cell expressed the MHC class I ligand itself. We also present indirect evidence for spontaneous MHC class I acquisition in vivo, as well as describe an in vitro coculture system with transfected cells in which the same phenomenon occurred. Functional studies in the latter model showed that uptake of H-2Dd by Ly49A+ NK cells was accompanied by a partial inactivation of cytotoxic activity in the NK cell, as tested against H-2Dd-negative target cells. In addition, ligand acquisition did not abrogate the ability of Ly49A+ NK cells to receive inhibitory signals from external H-2Dd molecules. This study is the first to describe ligand acquisition by NK cells, which parallels recently described phenomena in T and B cells.

1993 ◽  
Vol 178 (2) ◽  
pp. 597-604 ◽  
Author(s):  
A Moretta ◽  
M Vitale ◽  
C Bottino ◽  
A M Orengo ◽  
L Morelli ◽  
...  

Human CD3-16+56+ natural killer (NK) cells have been shown to display a clonally distributed ability to recognize major histocompatibility complex (MHC) class I alleles. Opposite to T lymphocytes, in NK cells, specific recognition of MHC class I molecules appears to induce inhibition of cytolytic activity and, thus, to protect target cells. Since a precise correlation has been established between the expression of the NK-specific GL183 and EB6 surface molecules (belonging to the novel p58 molecular family) and the specificity of NK clones, we analyzed whether p58 molecules could function as receptors for MHC in human NK cells. NK clones displaying the previously defined "specificity 2" and characterized by the GL183+EB6+ phenotype, specifically recognize the Cw3 allele and thus fail to lyse the Fc gamma R+ P815 target cells transfected with Cw3. On the other hand, NK clones displaying "specificity 1" and expressing the GL183-EB6+ phenotype failed to lyse Cw4+ target cells. Addition of the F(ab')2 fragments of either GL183 or EB6 mAb as well as the XA141 mAb of IgM isotype (specific for the EB6 molecules) completely restored the lysis of Cw3-transfected P815 cells by the Cw3-specific NK clones EX2 and EX4. Similarly, both the entire EB6 mAb, its F(ab')2 fragment and the XA141 mAb reconstituted the lysis of C1R, a Fc gamma R- target cell expressing Cw4 as the only serologically detected class I antigen. Thus, it appears that masking of different members of p58 molecules prevents recognition of "protective" MHC class I alleles and thus the delivering of inhibitory signals. Further support to the concept that p58 molecules represent a NK receptor delivering a negative signal was provided by experiments in which the entire anti-p58 mAbs (of IgG isotype) could inhibit the lysis of unprotected Fc gamma R+ P815 target cells, thus mimicking the inhibitory effect of MHC class I molecules.


1998 ◽  
Vol 188 (10) ◽  
pp. 1841-1848 ◽  
Author(s):  
Russell E. Vance ◽  
Jennifer R. Kraft ◽  
John D. Altman ◽  
Peter E. Jensen ◽  
David H. Raulet

Natural killer (NK) cells preferentially lyse targets that express reduced levels of major histocompatibility complex (MHC) class I proteins. To date, the only known mouse NK receptors for MHC class I belong to the Ly49 family of C-type lectin homodimers. Here, we report the cloning of mouse NKG2A, and demonstrate it forms an additional and distinct class I receptor, a CD94/NKG2A heterodimer. Using soluble tetramers of the nonclassical class I molecule Qa-1b, we provide direct evidence that CD94/NKG2A recognizes Qa-1b. We further demonstrate that NK recognition of Qa-1b results in the inhibition of target cell lysis. Inhibition appears to depend on the presence of Qdm, a Qa-1b-binding peptide derived from the signal sequences of some classical class I molecules. Mouse NKG2A maps adjacent to CD94 in the heart of the NK complex on mouse chromosome six, one of a small cluster of NKG2-like genes. Our findings suggest that mouse NK cells, like their human counterparts, use multiple mechanisms to survey class I expression on target cells.


2001 ◽  
Vol 193 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Naoki Matsumoto ◽  
Motoaki Mitsuki ◽  
Kyoko Tajima ◽  
Wayne M. Yokoyama ◽  
Kazuo Yamamoto

Natural killer (NK) cells express receptors that recognize major histocompatibility complex (MHC) class I molecules and regulate cytotoxicity of target cells. In this study, we demonstrate that Ly49A, a prototypical C-type lectin–like receptor expressed on mouse NK cells, requires species-specific determinants on β2-microglobulin (β2m) to recognize its mouse MHC class I ligand, H-2Dd. The involvement of β2m in the interaction between Ly49A and H-2Dd is also demonstrated by the functional effects of a β2m-specific antibody. We also define three residues in α1/α2 and α3 domains of H-2Dd that are critical for the recognition of H-2Dd on target cells by Ly49A. In the crystal structure of the Ly49A/H-2Dd complex, these residues are involved in hydrogen bonding to Ly49A in one of the two potential Ly49A binding sites on H-2Dd. These data unambiguously indicate that the functional effect of Ly49A as an MHC class I–specific NK cell receptor is mediated by binding to a concave region formed by three structural domains of H-2Dd, which partially overlaps the CD8 binding site.


1994 ◽  
Vol 180 (2) ◽  
pp. 687-692 ◽  
Author(s):  
B F Daniels ◽  
F M Karlhofer ◽  
W E Seaman ◽  
W M Yokoyama

Target cell expression of major histocompatibility complex (MHC) class I molecules correlates with resistance to lysis by natural killer (NK) cells. Prior functional studies of the murine NK cell surface molecule, Ly-49, suggested its role in downregulating NK cell cytotoxicity by specifically interacting with target cell H-2Dd molecules. In support of this hypothesis, we now demonstrate a physical interaction between H-2Dd and Ly-49 in both qualitative and quantitative cell-cell binding assays employing a stable transfected Chinese hamster ovary (CHO) cell line expressing Ly-49 and MHC class I transfected target cells. Binding occurred only when CHO cells expressed Ly-49 at high levels and targets expressed H-2Dd by transfection. Monoclonal antibody blocking experiments confirmed this interaction. These studies indicate that the specificity of natural killing is influenced by NK cell receptors that engage target cell MHC class I molecules.


1996 ◽  
Vol 184 (3) ◽  
pp. 913-922 ◽  
Author(s):  
O Mandelboim ◽  
H T Reyburn ◽  
M Valés-Gómez ◽  
L Pazmany ◽  
M Colonna ◽  
...  

Recognition of major histocompatibility complex class I molecules by natural killer (NR) cells leads to inhibition of target cell lysis. Based on the capacity of different human histocompatibility leukocyte antigen (HLA)-C and HLA-B molecules to inhibit target cell lysis by NK lines and clones, three NK allospecificities have been defined: NK1 and NK2 cells are inhibited by different HLA-C allotypes and NK3 cells by some HLA-B allotypes. The NK1 and NK2 inhibitory ligands on target cells correspond to a dimorphism of HLA-C at residues 77 and 80 in the alpha 1 helix: Asn77-Lys80 in NK1 and Ser77-Asn80 in NK2 inhibitory ligands. It has been reported that protection from NK1 killers depended on the presence of the Lys residue at position 80, an upward pointing residue near the end of the alpha 1 helix (and not on Asn77), whereas inhibition of NK2 effector cells required Ser77, a residue deep in the F pocket and interacting with the peptide (and not Asn80). As part of ongoing experiments to investigate the structural requirements for NK cell inhibition by HLA-C locus alleles, we also examined the effects of mutations at residues 77 and 80 on the ability of HLA-C alleles to confer protection from NK lysis. We present data confirming that the NK1 specificity depended on Lys80 (and not on Asn77); however recognition of NK2 ligands by NK cells was also controlled by the amino acid at position 80 (Asn), and mutation of Ser77 had no effect. Furthermore, bound peptide was shown to be unnecessary for the inhibition of NK cell-mediated lysis since HLA-C molecules assembled in the absence of peptide in RMA-S cells at 26 degrees C were fully competent to inhibit NK cells specifically. The implications of these data for peptide-independent recognition of HLA-C by NK receptors are discussed.


1997 ◽  
Vol 186 (3) ◽  
pp. 353-364 ◽  
Author(s):  
Maria H. Johansson ◽  
Charles Bieberich ◽  
Gilbert Jay ◽  
Klas Kärre ◽  
Petter Höglund

We have studied natural killer (NK) cell tolerance in a major histocompatibility complex (MHC) class I transgenic line, DL6, in which the transgene product was expressed on only a fraction of blood cells. In contrast with transgenic mice expressing the same transgene in all cells, NK cells from mosaic mice failed to reject transgene-negative bone marrow or lymphoma grafts. However, they retained the capability to reject cells with a total missing-self phenotype, i.e., cells lacking also wild-type MHC class I molecules. Tolerance against transgene-negative cells was demonstrated also in vitro, and could be broken if transgene-positive spleen cells of mosaic mice were separated from negative cells before, or after 4 d of culture in interleukin-2. The results provide support for selective NK cell tolerance to one particular missing-self phenotype but not to another. We suggest that this tolerance is determined by NK cell interactions with multiple cells in the environment, and that it is dominantly controlled by the presence of cells lacking a specific MHC class I ligand. Furthermore, the tolerant NK cells could be reactivated in vitro, which suggests that the tolerance occurs without deletion of the potentially autoreactive NK cell subset(s), and that it may be dependent upon the continuous presence of tolerizing cells.


1993 ◽  
Vol 177 (1) ◽  
pp. 201-205 ◽  
Author(s):  
L Franksson ◽  
E George ◽  
S Powis ◽  
G Butcher ◽  
J Howard ◽  
...  

Presentation of antigenic peptides by major histocompatibility complex (MHC) class I molecules requires MHC-encoded molecules of the adenosine triphosphate binding cassette (ABC) family. Defects in these proteins represent a potential risk, since they are essential links in the machinery of T cell-mediated surveillance which continuously scrutinizes peptide samples of cellular proteins. Nevertheless, transfection of the mouse lymphoma mutant RMA-S with the rat ABC gene mtp2a (homologue to mouse HAM2 and human RING11), commonly termed TAP-2 genes, led to a marked increase in tumor outgrowth potential in vivo. This occurred despite restored antigen presentation and sensitivity to cytotoxic T lymphocytes, and was found to be due to escape from natural killer (NK) cell-mediated rejection. It has previously been proposed that adequate expression of self-MHC class I is one important mechanism to avoid elimination by NK cells. Our data argue that a defect in the machinery responsible for processing and loading of peptides into MHC class I molecules is sufficient to render cells sensitive to elimination by NK cells. The latter thus appear to function as a surveillance of the peptide surveillance machinery.


2001 ◽  
Vol 193 (3) ◽  
pp. 307-316 ◽  
Author(s):  
Dawn M. Tanamachi ◽  
Thomas Hanke ◽  
Hisao Takizawa ◽  
Amanda M. Jamieson ◽  
David H. Raulet

Ly49 receptor genes are expressed by subsets of natural killer (NK) cells in an overlapping fashion, accounting for the capacity of NK subsets to attack host cells that have selectively downregulated self–major histocompatibility complex (MHC) class I molecules. It was shown previously that most NK cells express only one or the other allele of a given Ly49 gene, while a smaller population expresses both alleles. However, the methods used to detect monoallelic and biallelic cells were nonquantitative. Here, new allele-specific antibodies were used to provide the first quantitative examination of biallelic and monoallelic expression of Ly49A and Ly49G2. The results demonstrate conclusively that most Ly49A+ and Ly49G2+ NK cells express the corresponding gene in a monoallelic fashion, with a smaller subset expressing both alleles. Unexpectedly, biallelic Ly49A+ NK cells were more numerous than predicted by completely independent allelic expression, suggesting some heterogeneity among NK progenitors in the potential to express a given Ly49 gene. The data also show that cells expressing one allele of Ly49G2 may express Ly49A from the same or opposite chromosome with equal likelihood, indicating that the expressed allele is chosen independently for different Ly49 genes. Finally, the data demonstrate that biallelic expression of Ly49A or Ly49G2 occurs least frequently in mice that express ligands for these receptors (H-2d mice), and most frequently in class I–deficient mice. Thus, biallelic expression of Ly49 genes is regulated by interactions of NK cell progenitors with MHC class I molecules.


Sign in / Sign up

Export Citation Format

Share Document