cytolytic activity
Recently Published Documents


TOTAL DOCUMENTS

881
(FIVE YEARS 156)

H-INDEX

85
(FIVE YEARS 11)

2022 ◽  
Author(s):  
Dhiraj Agarwal ◽  
Sourav Paul ◽  
Pallavi Lele ◽  
Vikrant Piprode ◽  
Anand Kawade ◽  
...  

Abstract Several factors including sex and lifestyle have been reported to contribute to age-related alteration of immune functions. The study was undertaken to determine age-related differences in the proportion of peripheral blood mononuclear lymphocytes in the Indian population using blood samples from 67 healthy adults (33 females and 34 males) aged between 20 and 80 years old. In the linear regression analysis to estimate the relationship with age categories, there was a significant increase in the frequency of natural killer cells with aging, while their cytolytic activity significantly declined. The frequency of CD4+ T cells increased with age whereas that of CD8+ T cells decreased, resulting in age-associated increase of CD4/CD8 ratio. The subsets of B cells did not show any significant relationship with age. Although there were variations between the male and female subgroups in effect size of aging, the trends were in the same direction in all the parameters. Reduced fat intake was associated with the lower frequency of CD4+ T cells, and higher serum cotinine level was associated with higher CD4/CD8 ratio. The results indicate that cellular immunity in the Indian population is affected with aging, while the humoral immunity is less susceptible to aging.


Toxins ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 877
Author(s):  
Fabiana V. Campos ◽  
Helena B. Fiorotti ◽  
Juliana B. Coitinho ◽  
Suely G. Figueiredo

The majority of the effects observed upon envenomation by scorpaenoid fish species can be reproduced by the cytolysins present in their venoms. Fish cytolysins are multifunctional proteins that elicit lethal, cytolytic, cardiovascular, inflammatory, nociceptive, and neuromuscular activities, representing a novel class of protein toxins. These large proteins (MW 150–320 kDa) are composed by two different subunits, termed α and β, with about 700 amino acid residues each, being usually active in oligomeric form. There is a high degree of similarity between the primary sequences of cytolysins from different fish species. This suggests these molecules share similar mechanisms of action, which, at least regarding the cytolytic activity, has been proved to involve pore formation. Although the remaining components of fish venoms have interesting biological activities, fish cytolysins stand out because of their multifunctional nature and their ability to reproduce the main events of envenomation on their own. Considerable knowledge about fish cytolysins has been accumulated over the years, although there remains much to be unveiled. In this review, we compiled and compared the current information on the biochemical aspects and pharmacological activities of fish cytolysins, going over their structures, activities, mechanisms of action, and perspectives for the future.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongkai Zhuang ◽  
Shujie Wang ◽  
Bo Chen ◽  
Zedan Zhang ◽  
Zuyi Ma ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) has a hypoxic and desmoplastic tumor microenvironment (TME), leading to treatment failure. We aimed to develop a prognostic classifier to evaluate hypoxia status and hypoxia-related molecular characteristics of PDAC. In this study, we classified PDAC into three clusters based on 16 known hypoxia-inducible factor 1 (HIF-1)-related genes. Nine differentially expressed genes were identified to construct an HIF-1 score system, whose predictive efficacy was evaluated. Furthermore, we investigated oncogenic pathways and immune-cell infiltration status of PDAC with different scores. The C-index of the HIF-1score system for OS prediction in the meta-PDAC cohort and the other two validation cohorts were 0.67, 0.63, and 0.65, respectively, indicating that it had a good predictive value for patient survival. Furthermore, the area under the curve (AUC) of the receiver operating characteristic (ROC) curve of the HIF-1α score system for predicting 1-, 3-, and 4-year OS indicated the HIF-1α score system had an optimal discrimination of prognostic prediction for PDAC. Importantly, our model showed superior predictive ability compared to previous hypoxia signatures. We also classified PDAC into HIF-1 scores of low, medium, and high groups. Then, we found high enrichment of glycolysis, mTORC1 signaling, and MYC signaling in the HIF-1 score high group, whereas the cGMP metabolic process was activated in the low score group. Of note, analysis of public datasets and our own dataset showed a high HIF-1 score was associated with high immunosuppressive TME, evidenced by fewer infiltrated CD8+ T cells, B cells, and type 1 T-helper cells and reduced cytolytic activity of CD8+ T cells. In summary, we established a specific HIF-1 score system to discriminate PDAC with various hypoxia statuses and immune microenvironments. For highly hypoxic and immunosuppressive tumors, a combination treatment strategy should be considered in the future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johannes R. Kratz ◽  
Jack Z. Li ◽  
Jessica Tsui ◽  
Jen C. Lee ◽  
Vivianne W. Ding ◽  
...  

AbstractAlthough surgery for early-stage lung cancer offers the best chance of cure, recurrence still occurs between 30 and 50% of the time. Why patients frequently recur after complete resection of early-stage lung cancer remains unclear. Using a large cohort of stage I lung adenocarcinoma patients, distinct genetic, genomic, epigenetic, and immunologic profiles of recurrent tumors were analyzed using a novel recurrence classifier. To characterize the tumor immune microenvironment of recurrent stage I tumors, unique tumor-infiltrating immune population markers were identified using single cell RNA-seq on a separate cohort of patients undergoing stage I lung adenocarcinoma resection and applied to a large study cohort using digital cytometry. Recurrent stage I lung adenocarcinomas demonstrated higher mutation and lower methylation burden than non-recurrent tumors, as well as widespread activation of known cancer and cell cycle pathways. Simultaneously, recurrent tumors displayed downregulation of immune response pathways including antigen presentation and Th1/Th2 activation. Recurrent tumors were depleted in adaptive immune populations, and depletion of adaptive immune populations and low cytolytic activity were prognostic of stage I recurrence. Genomic instability and impaired adaptive immune responses are key features of stage I lung adenocarcinoma immunosurveillance escape and recurrence after surgery.


2021 ◽  
Author(s):  
Jinlong Huo ◽  
Shuang Shen ◽  
Chen Chen ◽  
Rui Qu ◽  
Youming Guo ◽  
...  

Abstract Background: Breast cancer(BC) is the most common tumour in women. Hypoxia stimulates metastasis in cancer and is linked to poor patient prognosis.Methods: We screened prognostic-related lncRNAs(Long Non-Coding RNAs) from the Cancer Genome Atlas (TCGA) data and constructed a prognostic signature based on hypoxia-related lncRNAs in BC.Results: We identified 21 differentially expressed lncRNAs associated with BC prognosis. Kaplan Meier survival analysis indicated a significantly worse prognosis for the high-risk group(P<0.001). Moreover, the ROC-curve (AUC) of the lncRNAs signature was 0.700, a performance superior to other traditional clinicopathological characteristics. Gene set enrichment analysis (GSEA) showed many immune and cancer-related pathways and in the low-risk group patients. Moreover, TCGA revealed that functions including activated protein C (APC)co-inhibition, Cinnamoyl CoA reductase(CCR),check-point pathways, cytolytic activity, human leukocyte antigen (HLA), inflammation-promotion, major histocompatibility complex(MHC) class1, para-inflammation, T cell co-inhibition, T cell co-stimulation, and Type Ⅰ and Ⅱ Interferons (IFN) responses were significantly different in the low-risk and high-risk groups. Immune checkpoint molecules such as ICOS, IDO1, TIGIT, CD200R1, CD28, PDCD1(PD-1), were also expressed differently between the two risk groups. The expression of m6A-related mRNA indicated that YTHDC1, RBM15, METTL3, and FTO were significantly between the high and low-risk groups.Additionally, immunotherapy in patients with BC from the low-risk group yielded a higher frequency of clinical responses to anti-PD-1/PD-L1 therapy or a combination of anti-PD-1/PD-L1and anti-CTLA4 therapies.Except for lapatinib, the results also show that a high-risk score is related to a higher half-maximal inhibitory concentration (IC50) of chemotherapy drugs.Conclusion: A novel hypoxia-related lncRNAs signature may serve as a prognostic model for BC.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3104
Author(s):  
Adriana Gutiérrez-Hoya ◽  
Isabel Soto-Cruz

Cervical cancer is one of the most prevalent gynaecological malignancies worldwide and is related to human papillomavirus (HPV) infection, viral persistence, progression, and invasion. Therefore, the immune response is linked to HPV status. Natural killer (NK) cells play a central role against virus-infected cells and tumours through a delicate balance between activating and inhibitory receptors and secretion of cytokines and chemokines. These cells also play a crucial role in tumour immunosurveillance. For these reasons, there is growing interest in harnessing NK cells as an immunotherapy for cervical cancer. These studies are diverse and include many strategies such as transferring activated autologous or allogeneic NK cells, improving the activation and cytolytic activity of NK cells using cytokines or analogues and modifying chimeric antigen receptors to increase specificity and targeting NK cells. However, research regarding the application of NK cells in immunotherapy is limited. This article focuses on recent discoveries about using NK cells to prevent and treat cervical cancer and the possibility of cellular immunotherapy becoming one of the best strategies to exploit the immune system to fight tumours.


2021 ◽  
Vol 12 ◽  
Author(s):  
ShuQiao Zhang ◽  
XinYu Li ◽  
ChunZhi Tang ◽  
WeiHong Kuang

Background: Gastric carcinoma (GC) is a molecularly and phenotypically highly heterogeneous disease, making the prognostic prediction challenging. On the other hand, Inflammation as part of the active cross-talk between the tumor and the host in the tumor or its microenvironment could affect prognosis.Method: We established a prognostic multi lncRNAs signature that could better predict the prognosis of GC patients based on inflammation-related differentially expressed lncRNAs in GC.Results: We identified 10 differently expressed lncRNAs related to inflammation associated with GC prognosis. Kaplan-Meier survival analysis demonstrated that high-risk inflammation-related lncRNAs signature was related to poor prognosis of GC. Moreover, the inflammation-related lncRNAs signature had an AUC of 0.788, proving their utility in predicting GC prognosis. Indeed, our risk signature is more precise in predicting the prognosis of GC patients than traditional clinicopathological manifestations. Immune and tumor-related pathways for individuals in the low and high-risk groups were further revealed by GSEA. Moreover, TCGA based analysis revealed significant differences in HLA, MHC class-I, cytolytic activity, parainflammation, co-stimulation of APC, type II INF response, and type I INF response between the two risk groups. Immune checkpoints revealed CD86, TNFSF18, CD200, and LAIR1 were differently expressed between lowand high-risk groups.Conclusion: A novel inflammation-related lncRNAs (AC015660.1, LINC01094, AL512506.1, AC124067.2, AC016737.1, AL136115.1, AP000695.1, AC104695.3, LINC00449, AC090772.1) signature may provide insight into the new therapies and prognosis prediction for GC patients.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 738-738
Author(s):  
Neal Flomenberg ◽  
Dolores Grosso ◽  
Yuri Sykulev ◽  
Nadezhda Anikeyeva ◽  
Yanping Huang ◽  
...  

Abstract SARS-COV-2 (COVID-19) has resulted in over 4 million deaths worldwide. While vaccination has decreased mortality, there remains a need for curative therapies for active infections. Uncertainties regarding the duration of post-vaccination immunity and the rapidity of mutational evolution by this virus suggest that it is unwise to rely on preventative measures alone. Humoral and cellular immunity provide selective pressure for the emergence of variant strains which have eliminated target epitopes. Elimination of immunodominant epitopes provides the strongest advantage to newly emerging strains and, consequently, immunodominant epitopes would be expected to be preferentially eliminated compared to subdominant epitopes in emerging variants. Immunologic treatments for SARS-COV-2 need to be continuously reassessed as new sequence information becomes available. TVGN-489 is a clinical grade product consisting of highly enriched, highly potent CD8+ CTLs recognizing peptides derived from COVID-19 gene/ORF products in an HLA restricted manner. CTLs are generated from apheresis products from individuals who have recovered from COVID-19 infections. Lymphocytes are serially primed and selected using APCs from these donors pulsed with small numbers of peptides encoded by the COVID-19 genome predicted or demonstrated to bind to specific HLA class I alleles. The resulting products are typically &gt;95% CD3+/CD8+, &gt;60% positive by tetramer staining and demonstrate strong cytolytic activity with &gt;60% lysis of peptide pulsed targets typically at an effector to target ratio of 3:1 (See Figure). Given the immunologic pressure to lose dominant target epitopes, we assessed whether the peptides derived from genomic sequences from early SARS-COV-2 strains (and successfully used to generate CTLs from donors infected with these early strains) were still present in the more recently evolved Delta variant. Seven peptides were used to generate CTL products restricted by HLA-A*02:01, the most common allele worldwide. These peptides are derived from the spike (S) and nucleocapsid (N) proteins as well as ORF3a and ORF1ab. The contributions of these peptides to the overall cytotoxicity and tetramer staining range from 2% to 18% without clear immunodominance by one of these peptides. Though identified in early viral strains, these sequences persist in 97.5%-100% of the more than 120 Delta variant sequences present in the NIH database. For HLA-A*01:01, eight peptides derived from the matrix (M) protein as well as ORF1ab and ORF3a were utilized to generate CTLs. Seven of the eight peptides showed binding similar to what was seen with the HLA-A*02:01 peptides (1% to 18%). However, in contrast to HLA-A*02:01, an immunodominant peptide (TTDPSFLGRY, ORF1ab 1637-1646) was noted which was responsible for over half of the observed tetramer binding. This region of ORF1ab was mutated in the Delta variant resulting in loss of this immunodominant epitope from nearly 93% of the Delta genomic sequences in the NIH database. The remaining subdominant peptides were all preserved in 100% of the sequences. Given the growing number of Delta cases, it will be essential to remove this peptide from the HLA-A*01:01 peptide pool used to stimulate SARS-COV-2-specific CD8+ CTLs to avoid encouraging the expansion of cells which would recognize early strains of the virus, but not Delta variants. The remaining CTLs, generated in the absence of TTDPSFLGRY, should be capable of eradicating Delta as well as the earlier prototypic strains of COVID-19. The loss of immunodominant epitopes is not surprising in a virus such as SARS-COV-2, with a high frequency of mutation. This provides an example of immunologic escape similar to what has been described for the Delta variant in the case of HLA-A24. These data are consistent with the hypothesis that immunodominant epitopes will be preferentially eliminated as the virus continues to evolve. They further illustrate the need to monitor viral sequences and to tune the production of CTLs in order to ensure that they can continue to recognize and effectively treat newly emerging variants of COVID-19. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare. OffLabel Disclosure: The drug is Cytotoxic T lymphocytes that are specific to COVID-19. Preclinical data.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2675-2675
Author(s):  
Arghya Ray ◽  
Melissa R Junttila ◽  
Ting DU ◽  
Dena Sutimantanapi ◽  
Xi Chen ◽  
...  

Abstract Introduction: Adenosine is an anti-inflammatory and immunosuppressive metabolite, that signals to diminish activation and proliferation of cytotoxic T-cells, impair activity of natural killer cells and CD4 + effector T-cells, and promote the expansion of immunosuppressive cell types. CD73, a cell surface ecto-5'-nucleotidase, is required to convert AMP to adenosine and is a major catalyst of adenosine generation in the tumor microenvironment. Overexpression of CD73 is observed in many tumors and correlates with unfavorable clinical outcome. Bone marrow (BM) aspirates from multiple myeloma (MM) patients have shown increased adenosine levels correspond with disease progression [Horenstein et al. Mol Med. 2016,22:694-704] In addition to the adenosine rich feature of MM, multiple cell types within the MM BM niche express the enzymes required for adenosine production from both NAD and ATP precursors, including CD38, CD203a, CD39 and CD73. Previously, we demonstrated that dysfunctional plasmacytoid dendritic cells (pDCs) predominantly found in the BM of MM patients contribute to MM cell growth, survival, and suppression of antitumor immunity [Chauhan et al, Cancer Cell 2009, 16:309-323; Ray et al, Leukemia 2015, 29:1441-1444]. We recently discovered that the interaction between pDCs and MM cells increased CD73 transcript and protein levels in both cell types, implicating a role for adenosine signaling via CD73 signaling axis in MM. Together, these MM disease features indicate that reducing the level of adenosine via inhibition of CD73 may represent a unique vulnerability and treatment strategy for MM. Methods: To understand the functional consequence of CD73 inhibition in MM, autologous ex vivo cell assays using freshly isolated BM aspirates from MM patients were used to detect changes in immune cell function and MM cell viability upon treatment with OP-5558, a potent and selective CD73 small molecule inhibitor which is an analog of the clinical candidate, ORIC-533. The majority of BM samples utilized were from patients with relapsed or refractory MM after at least three lines of therapy including immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies, as well as a patient with relapsed MM post BCMA-CAR-T therapy. Results: In BM aspirates from MM patients with relapsed refractory MM, CD73 inhibition by OP-5558 triggered activation of MM pDCs, evidenced by increased expression of CD40/CD83/CD86 (1.2-1.5-fold, OP-5558-treated versus untreated; p &lt; 0.05; n=3). This inhibition of CD73 reversed immunosuppression in MM BM. Specifically, CD73 inhibitor OP-5558 stimulated T-cell activation, associated with increased CD69 cell surface expression on CD3 + T-cells (CD69 MFI:20% increase, treated versus control; p = 0.0031; n = 3). Moreover, CD8 + T-cells from these co-cultures enhanced cytolytic activity against patient MM cells, significantly decreasing autologous MM cell viability (mean 42% decrease in viability; treated versus control; p=0.014; n=5). Of note, OP-5558 treatment did not directly affect viability of MM cells when treated in isolation, indicating that the observed decreased viability occurs via enhanced cytotoxic T-cell activity. Importantly, we show that OP-5558 triggered significant MM cell lysis even within autologous MM bone marrow mononuclear cell (BMNC) cultures, confirming that CD73 inhibition restores MM-specific cytolytic activity of autologous patient T-cells in the MM BM microenvironment. (mean 37% decrease in viability; treated versus control; p=0.009; n=3). Conclusions: This study therefore demonstrates that: 1. CD73-mediated adenosine activity suppresses the cytolytic activity of T-cells against tumor cells in the MM BM milieu; and 2. CD73 inhibition can overcome immune suppression and restore lysis of MM cells by autologous T-cells. A clinical trial of potent, selective, orally bioavailable CD73 inhibitor ORIC-533 will examine the utility of CD73 inhibition to improve outcome in patients with relapsed refractory MM. Disclosures Junttila: ORIC Pharmaceuticals: Current Employment. Sutimantanapi: ORIC Pharmaceuticals: Current Employment. Chen: ORIC Pharmaceuticals: Current Employment. Warne: ORIC Pharmaceuticals: Current Employment. Chang: ORIC Pharmaceuticals: Current Employment. Blank: ORIC Pharmaceuticals: Current Employment. Wu: ORIC Pharmaceuticals: Current Employment. Moore: ORIC Pharmaceuticals: Current Employment. Ndubaku: ORIC Pharmaceuticals: Current Employment. Zavorotinskaya: ORIC Pharmaceuticals: Current Employment. Nadeem: GSK: Membership on an entity's Board of Directors or advisory committees; Takeda: Membership on an entity's Board of Directors or advisory committees; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Membership on an entity's Board of Directors or advisory committees; BMS: Membership on an entity's Board of Directors or advisory committees. Friedman: ORIC Pharmaceuticals: Current Employment. Chauhan: C4 Therapeutics: Current equity holder in publicly-traded company; Stemline Therapeutics, Inc: Consultancy. Anderson: Millenium-Takeda: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Celgene: Membership on an entity's Board of Directors or advisory committees; Gilead: Membership on an entity's Board of Directors or advisory committees; Sanofi-Aventis: Membership on an entity's Board of Directors or advisory committees; Janssen: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Scientific Founder of Oncopep and C4 Therapeutics: Current equity holder in publicly-traded company, Current holder of individual stocks in a privately-held company; AstraZeneca: Membership on an entity's Board of Directors or advisory committees; Mana Therapeutics: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2788-2788
Author(s):  
Quy Le ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Cynthia Nourigat-Mckay ◽  
LaKeisha Perkins ◽  
...  

Abstract Background: A rare but highly aggressive type of AML that is only seen in infants with a unique immunophenotype (RAM phenotype) is caused by cryptic CBFA2T3-GLIS2 (CBF/GLIS) fusion. This infant AML is highly refractory to conventional chemotherapy with near uniform fatality despite highly intensive and myeloablative therapy (PMID 23153540). Transcriptome profiling of CBF/GLIS AML has revealed new insights into the pathogenesis of the fusion and uncovered fusion-specific molecular biomarkers that could be used for risk stratification and to inform treatment (PMID 30592296). Studying the largest cohort of these high-risk infants, we demonstrated several alterations in gene expression and transcriptional networks in these CBF/GLIS-positive patient samples that have potential for therapeutic targeting (PMID 31719049). FOLR1, which encodes for folate receptor alpha, was highly and uniquely expressed in CBF/GLIS AML but was entirely absent in AML with other cytogenetics abnormalities and in normal hematopoietic cells. Furthermore, we recently demonstrated that forced expression of CBF/GLIS enhances the proliferation and alters differentiation in cord blood (CB) CD34+ early precursors towards megakaryocytic lineage that recapitulates acute megakaryocytic leukemia seen in infants (PMID 31719049). Of significance, we showed that FOLR1 surface expression is causally linked to CBF/GLIS-induced malignant transformation, thus making it an attractive antigen for targeted therapies against CBF/GLIS AML cells. Given that chimeric antigen receptor (CAR) T cells are extremely effective at eradicating relapsed/refractory B-ALL malignancies, we developed FOLR1-directed CAR T cells for pre-clinical evaluation in CBF/GLIS AML. Methods: We generated a FOLR1-directed CAR using anti-FOLR1 binder (Farletuzumab), IgG4 intermediate spacer and 41-BB/CD3zeta signaling domains. The pre-clinical efficacy of FOLR1 CAR T cells was evaluated against CBF/GLIS AML cell lines in vitro and in vivo. CBF/GLIS AML models include CB CD34+ cells transduced with CBF/GLIS expression construct (CBF/GLIS-CB) and WSU-AML cell line. We also engineered Kasumi-1 cell line to express FOLR1 (Kasumi-1 FOLR1+) to evaluate target specificity (Figure 1A). Results: We tested the target specificity of FOLR1-directed CAR T cells against FOLR1-positive (CBF/GLIS-CB, WSU-AML, Kasumi-1 FOLR1+) and FOLR1-negative (Kasumi-1) cells. CD8 FOLR1 CAR T cells demonstrated cytolytic activity against FOLR1 positive but not FOLR1 negative cells (Figure 1B). Furthermore, both CD8 and CD4 FOLR1 CAR T cells produced higher levels of IL-2, IFN-γ, and TNF-α and proliferated more robustly than did unmodified T cells when co-incubated with FOLR1 positive but not FOLR1 negative cells (Figure 1C). These results indicate highly specific reactivity of FOLR1 CAR T cells against AML cells expressing FOLR1. We next investigated the in vivo efficacy of FOLR1-directed CAR T cells. In CBF/GLIS-CB, WSU-AML, and Kasumi-1 FOLR1+ xenograft models, treatment with FOLR1 CAR T cells induced leukemia clearance, while disease progression occurred in all mice that received unmodified T cells (Figure 1D). Activity of FOLR1 CAR T cells in vivo was target specific, as they did not limit the leukemia progression nor extend the survival of Kasumi-1 xenografts (Figure 1D). To determine whether FOLR1 is expressed on normal HSPCs, we characterized FOLR1 expression in normal CB CD34+ samples. FOLR1 expression was entirely silent in HSPC subsets (Figure 1E). Consistent with lack of expression, no cytolytic activity was detected against HPSCs Moreover, FOLR1 CAR T cells did not affect the self-renewal and multilineage differentiation capacity of normal HSPCs as compared to unmodified control T cells (Figure 1F), whereas significant eradication of colonies were detected in the CBF/GLIS-CB cells (Figure 1G). Conclusion: In this study, we demonstrate that FOLR1 CAR T effectively eradicates CBF/GLIS AML cells without compromising normal HSPCs, providing a promising approach for the treatment of high-risk CBF/GLIS AML. Transition of this CAR T to clinical development for infant AML is underway. Figure 1 Figure 1. Disclosures Hylkema: Moderna: Current equity holder in publicly-traded company; Quest Diagnostics Inc: Current equity holder in publicly-traded company. Pardo: Hematologics, Inc.: Current Employment. Eidenschink Brodersen: Hematologics, Inc.: Current Employment, Other: Equity Ownership. Loken: Hematologics, Inc.: Current Employment, Other: current equity holder in a privately owned company.


Sign in / Sign up

Export Citation Format

Share Document