scholarly journals Application of transretinal current stimulation for the study of bipolar-amacrine transmission.

1984 ◽  
Vol 84 (6) ◽  
pp. 915-925 ◽  
Author(s):  
J Toyoda ◽  
M Fujimoto

Transretinal current flowing from the receptor side to the vitreous side depolarizes the axon terminals of retinal cells and facilitates the release of transmitter. Such current elicited a depolarizing response in off-center bipolar cells and a hyperpolarizing response in on-center bipolar cells. It also elicited a response of relatively complex waveform in amacrine cells. The responses elicited in bipolar cells were suppressed in the presence of 5-10 mM glutamate in the perfusing Ringer solution, while the responses of amacrine cells persisted, although their waveform changed to a simple one that showed monotonic depolarization irrespective of the type of amacrine cell and were accompanied by a decrease in the membrane resistance. The results indicate excitatory synaptic transmission from bipolar cells to amacrine cells. Since the response elicited by current in ON-OFF cells was almost identical to those elicited in ON or OFF amacrine cells, the transient nature of their light response cannot be due to their membrane properties. ON-OFF cells responded to transretinal current flowing in the opposite direction with a small hyperpolarization accompanied by a resistance increase. The hyperpolarizing response was suppressed by the addition of GABA in glutamate Ringer solution. The results suggest an activation by the current of GABA-ergic feedback pathways from amacrine cells to bipolar cells.

2010 ◽  
Vol 103 (3) ◽  
pp. 1456-1466 ◽  
Author(s):  
Margaret Lin Veruki ◽  
Leif Oltedal ◽  
Espen Hartveit

AII amacrine cells in the mammalian retina are connected via electrical synapses to on-cone bipolar cells and to other AII amacrine cells. To understand synaptic integration in these interneurons, we need information about the junctional conductance ( gj), the membrane resistance ( rm), the membrane capacitance ( Cm), and the cytoplasmic resistivity ( Ri). Due to the extensive electrical coupling, it is difficult to obtain estimates of rm, as well as the relative contribution of the junctional and nonjunctional conductances to the total input resistance of an AII amacrine cell. Here we used dual voltage-clamp recording of pairs of electrically coupled AII amacrine cells in an in vitro slice preparation from rat retina and applied meclofenamic acid (MFA) to block the electrical coupling and isolate single AII amacrines electrically. In the control condition, the input resistance ( Rin) was ∼620 MΩ and the apparent rm was ∼760 MΩ. After block of electrical coupling, determined by estimating gj in the dual recordings, Rin and rm were ∼4,400 MΩ, suggesting that the nongap junctional conductance of an AII amacrine cell is ∼16% of the total input conductance. Control experiments with nucleated patches from AII amacrine cells suggested that MFA had no effect on the nongap junctional membrane of these cells. From morphological reconstructions of AII amacrine cells filled with biocytin, we obtained a surface area of ∼900 μm2 which, with a standard value for Cm of 0.01 pF/μm2, corresponds to an average capacitance of ∼9 pF and a specific membrane resistance of ∼41 kΩ cm2. Together with information concerning synaptic connectivity, these data will be important for developing realistic compartmental models of the network of AII amacrine cells.


2014 ◽  
Vol 112 (6) ◽  
pp. 1491-1504 ◽  
Author(s):  
Hannah Choi ◽  
Lei Zhang ◽  
Mark S. Cembrowski ◽  
Carl F. Sabottke ◽  
Alexander L. Markowitz ◽  
...  

In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell.


2018 ◽  
Vol 120 (2) ◽  
pp. 867-879 ◽  
Author(s):  
Michael D. Flood ◽  
Johnnie M. Moore-Dotson ◽  
Erika D. Eggers

Dopamine modulation of retinal signaling has been shown to be an important part of retinal adaptation to increased background light levels, but the role of dopamine modulation of retinal inhibition is not clear. We previously showed that light adaptation causes a large reduction in inhibition to rod bipolar cells, potentially to match the decrease in excitation after rod saturation. In this study, we determined how dopamine D1 receptors in the inner retina contribute to this modulation. We found that D1 receptor activation significantly decreased the magnitude of inhibitory light responses from rod bipolar cells, whereas D1 receptor blockade during light adaptation partially prevented this decline. To determine what mechanisms were involved in the modulation of inhibitory light responses, we measured the effect of D1 receptor activation on spontaneous currents and currents evoked from electrically stimulating amacrine cell inputs to rod bipolar cells. D1 receptor activation decreased the frequency of spontaneous inhibition with no change in event amplitudes, suggesting a presynaptic change in amacrine cell activity in agreement with previous reports that rod bipolar cells lack D1 receptors. Additionally, we found that D1 receptor activation reduced the amplitude of electrically evoked responses, showing that D1 receptors can modulate amacrine cells directly. Our results suggest that D1 receptor activation can replicate a large portion but not all of the effects of light adaptation, likely by modulating release from amacrine cells onto rod bipolar cells. NEW & NOTEWORTHY We demonstrated a new aspect of dopaminergic signaling that is involved in mediating light adaptation of retinal inhibition. This D1 receptor-dependent mechanism likely acts through receptors located directly on amacrine cells, in addition to its potential role in modulating the strength of serial inhibition between amacrine cells. Our results also suggest that another D2/D4 receptor-dependent or dopamine-independent mechanism must also be involved in light adaptation of inhibition to rod bipolar cells.


1988 ◽  
Vol 59 (6) ◽  
pp. 1657-1672 ◽  
Author(s):  
F. Muller ◽  
H. Wassle ◽  
T. Voigt

1. In the intact cat eye, the responses of ganglion cells to light stimulation were recorded extracellularly and the actions of iontophoretically applied 2-amino-4-phosphonobutyrate (APB), a potent agonist at ON-bipolars, and of strychnine, a glycine antagonist, were investigated. 2. Under light-adapted conditions, the activity of ON-center ganglion cells is decreased by APB but is increased by strychnine. APB and strychnine act independently of one another. 3. The activity of light-adapted OFF-center ganglion cells is increased by APB and by strychnine. The light response remains clearly modulated. Strychnine blocks the action of simultaneously applied APB. The results are in agreement with the action of a push-pull mechanism, according to which ON-cone-bipolars provide a glycinergic input into OFF-center ganglion cells. 4. Under dark-adapted conditions, APB blocks the light responses of both ON-center and OFF-center ganglion cells. The discharge rate of ON-center ganglion cells is completely suppressed; OFF-center ganglion cells show a high maintained discharge. 5. Strychnine blocks the scotopic light response of OFF-center ganglion cells and blocks the action of simultaneously applied APB. The light response of ON-center ganglion cells is hardly affected by strychnine. 6. The effects of strychnine on OFF-center ganglion cells are in agreement with the hypothesis that the glycinergic AII amacrine cells modulate the activity of the scotopic OFF-channel. 7. Intravitreally applied APB abolished the scotopic b-wave of the electroretinogram at concentrations of 100 microM. 8. Our data suggest that as in rabbit (10) the rod bipolars in cat retina are depolarizing (ON) bipolar cells.


2010 ◽  
Vol 103 (1) ◽  
pp. 25-37 ◽  
Author(s):  
Erika D. Eggers ◽  
Peter D. Lukasiewicz

While connections between inhibitory interneurons are common circuit elements, it has been difficult to define their signal processing roles because of the inability to activate these circuits using natural stimuli. We overcame this limitation by studying connections between inhibitory amacrine cells in the retina. These interneurons form spatially extensive inhibitory networks that shape signaling between bipolar cell relay neurons to ganglion cell output neurons. We investigated how amacrine cell networks modulate these retinal signals by selectively activating the networks with spatially defined light stimuli. The roles of amacrine cell networks were assessed by recording their inhibitory synaptic outputs in bipolar cells that suppress bipolar cell output to ganglion cells. When the amacrine cell network was activated by large light stimuli, the inhibitory connections between amacrine cells unexpectedly depressed bipolar cell inhibition. Bipolar cell inhibition elicited by smaller light stimuli or electrically activated feedback inhibition was not suppressed because these stimuli did not activate the connections between amacrine cells. Thus the activation of amacrine cell circuits with large light stimuli can shape the spatial sensitivity of the retina by limiting the spatial extent of bipolar cell inhibition. Because inner retinal inhibition contributes to ganglion cell surround inhibition, in part, by controlling input from bipolar cells, these connections may refine the spatial properties of the retinal output. This functional role of interneuron connections may be repeated throughout the CNS.


2018 ◽  
Author(s):  
Robert E. Marc ◽  
Crystal Sigulinsky ◽  
Rebecca L. Pfeiffer ◽  
Daniel Emrich ◽  
James R. Anderson ◽  
...  

AbstractAll superclasses of retinal neurons display some form of electrical coupling including the key neurons of the inner plexiform layer: bipolar cells (BCs), amacrine or axonal cells (ACs) and ganglion cells (GCs). However, coupling varies extensively by class. For example, mammalian rod bipolar cells form no gap junctions at all, while all cone bipolar cells form class-specific coupling arrays, many of them homocellular in-superclass arrays. Ganglion cells are unique in that classes with coupling predominantly form heterocellular cross-class arrays of ganglion cell::amacrine cell (GC::AC) coupling in the mammalian retina. Ganglion cells are the least frequent superclass in the inner plexiform layer and GC::AC gap junctions are sparsely arrayed amidst massive cohorts of AC::AC, bipolar cell BC::BC, and AC::BC gap junctions. Many of these gap junctions and most ganglion cell gap junctions are suboptical, complicating analysis of specific ganglion cells. High resolution 2 nm TEM analysis of rabbit retinal connectome RC1 allows quantitative GC::AC coupling maps of identified ganglion cells. Ganglion cells classes apparently avoid direct cross-class homocellular coupling altogether even though they have opportunities via direct membrane touches, while transient OFF alpha ganglion cells and transient ON directionally selective (DS) ganglion cells are strongly coupled to distinct amacrine / axonal cell cohorts.A key feature of coupled ganglion cells is intercellular metabolite flux. Most GC::AC coupling involves GABAergic cells (γ+ amacrine cells), which results in significant GABA flux into ganglion cells. Surveying GABA coupling signatures in the ganglion cell layer across species suggests that the majority of vertebrate retinas engage in GC::AC coupling.Multi-hop synaptic queries of the entire RC1 connectome clearly profiles the coupled amacrine and axonal cells. Photic drive polarities and source bipolar cell class selec-tivities are tightly matched across coupled cells. OFF alpha ganglion cells are coupled to OFF γ+ amacrine cells and transient ON DS ganglion cells are coupled to ON γ+ amacrine cells including a large interstitial axonal cell (IAC). Synaptic tabulations show close matches between the classes of bipolar cells sampled by the coupled amacrine and ganglion cells. Further, both ON and OFF coupling ganglion networks show a common theme: synaptic asymmetry whereby the coupled γ+ neurons are also presynaptic to ganglion cell dendrites from different classes of ganglion cells outside the coupled set. In effect, these heterocellular coupling patterns enable an excited ganglion cell to directly inhibit nearby ganglion cells of different classes. Similarly, coupled γ+ amacrine cells engaged in feedback networks can leverage the additional gain of bipolar cell synapses in shaping the signaling of a spectrum of downstream targets based on their own selective coupling with ganglion cells.


2019 ◽  
Vol 36 ◽  
Author(s):  
Andrea S. Bordt ◽  
Diego Perez ◽  
Luke Tseng ◽  
Weiley Sunny Liu ◽  
Jay Neitz ◽  
...  

AbstractThere are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3). One cell of this type was partially reconstructed in a retinal connectome developed using automated transmission electron microscopy (ATEM). It had slender, relatively straight dendrites that ramify in the sublamina a of the IPL. The dendrites of the SB3 cell were always postsynaptic in the IPL, supporting its identity as a ganglion cell. It received 29% of its input from bipolar cells, a value in the middle of the range for rabbit retinal ganglion cells studied previously. The SB3 cell typically received only one synapse per bipolar cell from multiple types of presumed OFF bipolar cells; reciprocal synapses from amacrine cells at the dyad synapses were infrequent. In a few instances, the bipolar cells presynaptic to the SB3 ganglion cell also provided input to an amacrine cell presynaptic to the ganglion cell. There was apparently no crossover inhibition from narrow-field ON amacrine cells. Most of the amacrine cell inputs were from axons and dendrites of GABAergic amacrine cells, likely providing inhibitory input from outside the classical receptive field.


2005 ◽  
Vol 22 (4) ◽  
pp. 535-549 ◽  
Author(s):  
JIAN ZHANG ◽  
WEI LI ◽  
HIDEO HOSHI ◽  
STEPHEN L. MILLS ◽  
STEPHEN C. MASSEY

The correlation between cholinergic sensitivity and the level of stratification for ganglion cells was examined in the rabbit retina. As examples, we have used ON or OFF α ganglion cells and ON/OFF directionally selective (DS) ganglion cells. Nicotine, a cholinergic agonist, depolarized ON/OFF DS ganglion cells and greatly enhanced their firing rates but it had modest excitatory effects on ON or OFF α ganglion cells. As previously reported, we conclude that DS ganglion cells are the most sensitive to cholinergic drugs. Confocal imaging showed that ON/OFF DS ganglion cells ramify precisely at the level of the cholinergic amacrine cell dendrites, and co-fasciculate with the cholinergic matrix of starburst amacrine cells. However, neither ON or OFF α ganglion cells have more than a chance association with the cholinergic matrix. Z-axis reconstruction showed that OFF α ganglion cells stratify just below the cholinergic band in sublamina a while ON α ganglion cells stratify just below cholinergic b. The latter is at the same level as the terminals of calbindin bipolar cells. Thus, the calbindin bipolar cell appears to be a prime candidate to provide the bipolar cell input to ON α ganglion cells in the rabbit retina. We conclude that the precise level of stratification is correlated with the strength of cholinergic input. Alpha ganglion cells receive a weak cholinergic input and they are narrowly stratified just below the cholinergic bands.


1995 ◽  
Vol 12 (2) ◽  
pp. 345-358 ◽  
Author(s):  
J.H. Brandstätter ◽  
U. Greferath ◽  
T. Euler ◽  
H. Wässle

AbstractDirection-selective (DS) ganglion cells of the mammalian retina have their dendrites in the inner plexiform layer (IPL) confined to two narrow strata. The same strata are also occupied by the dendrites of cholinergic amacrine cells which are probably presynaptic to the DS ganglion cells. GABA is known to play a crucial role in creating DS responses. We examined the types of GABAA receptors expressed by the cholinergic amacrine cells and also those expressed by their presynaptic and postsynaptic neurons, by applying immunocytochemical markers to vertical sections of rat retinas. Double-labelling experiments with antibodies against choline acetyltransferase (ChAT) and specific antibodies against different GABAA receptor subunits were performed. Cholinergic amacrine cells seem to express an unusual combination of GABAA receptor subunits consisting of α2-, β1-, β2/3-, γ2-, and δ-subunits. Bipolar cells, which could provide synaptic input to the DS circuitry, were stained with antibodies against the glutamate transporter GLT-1. The axon terminals of these bipolar cells are narrowly stratified in close proximity to the dendritic plexus of displaced cholinergic amacrine cells. The retinal distribution of synaptoporin, a synaptic vesicle associated protein, was studied. Strong reduction of immunolabelling was observed in the two cholinergic strata. The anatomical findings are discussed in the context of models of the DS circuitry of the mammalian retina.


1988 ◽  
Vol 92 (4) ◽  
pp. 475-487 ◽  
Author(s):  
T Kujiraoka ◽  
T Saito ◽  
J Toyoda

To elucidate the synaptic transmission between bipolar cells and amacrine cells, the effect of polarization of a bipolar cell on an amacrine cell was examined by simultaneous intracellular recordings from both cells in the isolated carp retina. When either an ON or OFF bipolar cell was depolarized by an extrinsic current step, an ON-OFF amacrine cell was transiently depolarized at the onset of the current but no sustained polarization during the current was detected. The current hyperpolarizing the OFF bipolar cell also produced the transient depolarization of the amacrine cell at the termination of the current. These responses had a latency of approximately 10 ms. The amplitude of the current-evoked responses changed gradually with current intensity within the range used in these experiments. They were affected by polarization of the amacrine cell membrane; the amplitude of the current-evoked responses as well as the light-evoked responses was increased when the amacrine cell membrane was hyperpolarized, while the amplitude was decreased when the cell was depolarized. These results confirm directly that ON-OFF amacrine cells receive excitatory inputs from both ON and OFF bipolar cells: the ON transient is due to inputs from ON bipolar cells, and the OFF transient to inputs from OFF bipolar cells. The steady polarization of bipolar cells is converted into transient signals during the synaptic process.


Sign in / Sign up

Export Citation Format

Share Document