ringer solution
Recently Published Documents


TOTAL DOCUMENTS

712
(FIVE YEARS 49)

H-INDEX

48
(FIVE YEARS 3)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Hui Chen ◽  
Xirong Lu ◽  
Beiqi Xu ◽  
Chen Meng ◽  
Dan Xie

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Deep Shikha ◽  
Monica Kumari ◽  
Anuradha Mohanty ◽  
Ashwini Kumar Singh ◽  
Sanjay Kumar Sinha

Abstract Polyvinyl alcohol (PVA) mixed with hydroxyapatite (HAP) has great potential for application as biomaterial. PVA/HAP powder was synthesized by sol–gel technique and was compressed to make pellets. These samples were examined with Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), X-ray diffraction (XRD) and electrochemical analysis (ECA) techniques. Compound formation of HAP and PVA were studied using XRD and microstructure was investigated by FESEM and AFM. Characteristics properties of the HAP and PVA/HAP composite are compared. Corrosion resistance of PVA/HAP in Ringer solution is better than HAP. Interesting microstructure features are correlated with the corrosion resistance. As the corrosion resistance is related with biocompatibility, the present work can be useful for the hard tissue implant.


2021 ◽  
Vol 9 (1) ◽  
pp. 164-171
Author(s):  
Luka YB ◽  
Hussaini Adamu

Pseudomonas oleovorans NCIMB 6576 and Ralstonia eutropha NCIMB 10442 were used for the production of Polyhydroxyalkanoates (PHA) from industrial waste cooking oils, the bacteria were cultured on tryptone soya broth (TSB) and Tryptone soya agar (TSA). The growth pattern of the bacteria, serial dilution and viable counting was done using the Miles and Misra method, 0.5ml (500 µl) of the sample was transferred aseptically into test tubes filled with 4.5ml ringer solution (1/4 strength) resulting in a ten-fold dilution, the growth curve of the cultures of P. oleovorans NCIMB6576 grown on TSB with and without PS oil sample shows error bars in the graph for each point depicting the standard error of the mean. The initial viable count ranges between 6.37 log10 cfu/ml and 5.1 log10 cfu/ml. The viable count reached its peak after 30 hours giving approximately 9.7 log10 cfu/ml for P. oleovorans NCIMB6576 with PS oil and 9.24 log10 cfu/ml after 30 hours as well without the oil, showing that maximum cell count was attained at the same time. The growth curves of P. oleovorans NCIMB6576 grown on TSB with and without the oil sample TS, where the errors bars depicts the standard errors of the means on each point. The initial viable count at the start of the experiments shows that for P. oleovorans NCIMB6576 grown with the oil, there was an initial viable count of 6.1 log10 cfu/ml as compared to 5.1 log10 cfu/ml without the oil respectively. It was observe that the time at which maximum cell counts was attained is slightly longer when the oil was not used as a carbon source (30 hours) as compared to the oil control (27 hours). A decline in cell count is also noticeable after 30 hours until it reaches its minimum value of 9.4 log.10 cfu/ml after 48 hours in the experiment involving the oil sample TS.


2021 ◽  
Vol 55 (5) ◽  
Author(s):  
Ali A. Al- Allaq ◽  
Jenan S. Kashan ◽  
Mohamed T. El-Wakad ◽  
Ahmed M. Soliman

In this investigation, multi-wall carbon nanotubes (MWCNT) with various percentages (0.6%, 1%, 1.4%, 2%) were combined into   ​and High-density polyethylene HDPE (60) wt. % and hydroxyapatite (40) wt. % to form biocomposite using hot-press techniques. The surface topography by AFM images illustrates differences in the roughness of the sample's surface with different adding percentages of MWCNT. The DSC technique exhibits the effect of adding MWCNT in different percentages with the degree of crystallinity, which its effect on mechanical properties for samples. The in vitro bioactivity was investigated by immersion the samples in Ringer's solution as simulated body fluid (SBF) at (0, 3, 6, 9, 12) days (after immersing). The FE-SEM and EDx image explained the apatite layers formation on the sample's surface after 3 days immersed in Ringer solution. Based on XRD Technique, after immersion days in the Ringer solution, the crystallographic structure of hydroxyapatite is formed, forming the monetite.  ​The enhancement of bioactivity has been shown during the incorporation of MWCNT into HA/HDPE composite. These results exhibited excellent indications of biocompatibility properties with the possibility of making promising biomaterials for making bone substitute applications.                                                                                                       


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2716
Author(s):  
James D. Gillis ◽  
Linda M. Penfold ◽  
Natalie D. Mylniczenko

This study investigated the reproductive biology and sperm cryopreservation of ex situ southern stingrays (Hypanus americanus) by semen collection and characterization and the development and validation of an enzyme-linked immunoassay for plasma total testosterone. Semen was collected in March and June using a manual massage technique, and the ejaculates were assessed for volume, pH, osmolarity, motility, status (0–5 scale: 0 = no forward progression, 5 = rapid linear progression) and total sperm count. Semen was extended in Hank’s elasmobranch ringer solution containing 10% DMSO, 10% glycerol or 5% glycerol with 5% N-methylformamide and cryopreserved using a conventional freezing method (~−50 °C/min) or a modified slow freezing method (~−3 °C/min). Body condition was scored from 1–5 and was noted to be low in March (1.93 ± 0.07) due to feeding practices and increased by June (2.93 ± 0.05) after dietary corrections were made. A concomitant increase (p < 0.05) in plasma total testosterone concentration and sperm motility was noted between March (8.0 ± 7.2 ng/mL, 5.71 ± 2.77%) and June (97.3 ± 11.3 ng/mL, 51.4 ± 14.3%). Samples cryopreserved using a modified slow freeze method (~−3 °C/min) had higher post-thaw motility and plasma membrane integrity than conventionally cryopreserved samples. Data indicate that southern stingray sperm morphometrics adheres to those of other elasmobranch species and that a slow cooling rate may be an avenue of research to improve southern stingray sperm survival during cryopreservation.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Anna Woźniak ◽  
Marcin Staszuk ◽  
Łukasz Reimann ◽  
Oktawian Bialas ◽  
Zbigniew Brytan ◽  
...  

AbstractHerein, we analyzed the morphology of atmospheric plasma-sprayed (APS) coating on medical 316L stainless steel and its influence on the physical and electrochemical properties of implant application. Five types of coatings were examined: hydroxyapatite (HAp), titanium (Ti), zirconium (Zr), Ti/HAp and Zr/HAp. The base properties of the coatings were analyzed via chemical and phase composition, surface topography, surface wettability and in particular the corrosion resistance in Ringer solution in immersed conditions and potentiodynamic test, and EIS analysis. APS coating of pure HAp on 316L stainless steel showed poor cohesive bonding to the substrate material, whereas the application of Ti and Zr interlayer prior to HAp deposition improved surface morphology and coating properties. The beneficial effect of Ti and Zr interlayer under HAp layer on binding was demonstrated. HAp containing coatings (HAp, Ti/HAp and Zr/HAp) show Ca/P ratio greater than 1.8, which may positively influence the differentiation of osteogenic cells and good adhesion to bones. Among the studied materials, the composite coatings with Zr or Zr/HAp showed favorable physicochemical properties and the highest corrosion resistance in Ringer solution.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4949
Author(s):  
Carmen Marina Garcia-Falcon ◽  
Tomas Gil-Lopez ◽  
Amparo Verdu-Vazquez ◽  
Julia Claudia Mirza-Rosca

Nickel-based and cobalt-based metal alloys are frequently used in dentistry. The introduction of various elements in the alloy changes its characteristics, and a thorough study of each alloy should be completed to determine its appropriate corrosion resistance and biocompatibility in contact with physiological fluids. There are scarce investigations on these widely used dental alloys in Ringer solution, and findings in this research bring new experimental data and information. The present study evaluated and compared the corrosion behavior of six NiCr- and two CoCr-based dental materials in Ringer solution, using the following techniques: potentiostatic polarization curves (chronoamperometry), microstructural analysis, and EIS (electrochemical impedance spectroscopy). The results obtained in this investigation showed that in the NiCr-based specimens Ni4, Ni5, and Ni6 the stability of the passive layer was destroyed after polarization and a development and growth of stable pits was found in the microstructural analysis after electrochemical treatment. In terms of susceptibility to corrosion, two different groups of specimens were derived from this investigation. A first group which included the two CoCr (Co1 and Co2) and three of the six NiCr alloys studied (Ni1, Ni2, and Ni3). A second group with the other NiCr alloys investigated Ni4, Ni5, and Ni6.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Carmen Marina Garcia-Falcon ◽  
Tomas Gil-Lopez ◽  
Amparo Verdu-Vazquez ◽  
Julia Claudia Mirza-Rosca

Purpose This paper aims to analyze the corrosion behavior in Ringer solution of six commercially used Ni-based alloys that are present and commonly used as metallic biomaterials. Design/methodology/approach The specimens were received in the form of cylindrical ingots and were cut to get five samples of each brand with a cylindrical shape of 2 mm height to conduct the study. In this scientific research, the following techniques were used: open circuit potential, potentiodynamic polarization studies, and electrochemical impedance spectroscopy. Findings The study findings revealed the passivation tendency of the different specimens. Additionally, when the materials were compared, it was discovered that the decisive factor for high corrosion resistance was the chromium concentration. However, with similar chromium content, the stronger concentration in molybdenum increased the resistance. According to the results obtained in this investigation, the biological safety of the dental materials studied in Ringer solution was considered very high for specimens 1 and 2, and adequate for the other samples. Originality/value Metal alloys used as biomaterials in contact with the human body should be deeply investigated to make sure they are biocompatible and do not cause any harm. The corrosion resistance of an alloy is the most important characteristic for its biological safety, as all problems arise because of the corrosion process. There is scarce investigation in these Ni-based dental biomaterials, and none found in these commercially used dental materials in Ringer solution.


Sign in / Sign up

Export Citation Format

Share Document