Cosmic-ray gradient measurements and modulation beyond the inner solar wind termination shock

1990 ◽  
Vol 365 ◽  
pp. 365 ◽  
Author(s):  
J. J. Quenby ◽  
J. A. Lockwood ◽  
W. R. Webber
2004 ◽  
Vol 22 (8) ◽  
pp. 3063-3072 ◽  
Author(s):  
U. W. Langner ◽  
M. S. Potgieter

Abstract. The interest in the role of the solar wind termination shock and heliosheath in cosmic ray modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the solar wind termination shock. The effect of the solar wind termination shock on charge-sign dependent modulation, as is experienced by galactic cosmic ray Helium (He++) and anomalous Helium (He+), is the main topic of this work, and is complementary to the previous work on protons, anti-protons, electrons, and positrons. The modulation of galactic and anomalous Helium is studied with a numerical model including a more fundamental and comprehensive set of diffusion coefficients, a solar wind termination shock with diffusive shock acceleration, a heliosheath and particle drifts. The model allows a comparison of modulation with and without a solar wind termination shock and is applicable to a number of cosmic ray species during both magnetic polarity cycles of the Sun. The modulation of Helium, including an anomalous component, is also done to establish charge-sign dependence at low energies. We found that the heliosheath is important for cosmic ray modulation and that its effect on modulation is very similar for protons and Helium. The local Helium interstellar spectrum may not be known at energies


2013 ◽  
Vol 31 (7) ◽  
pp. 1205-1212 ◽  
Author(s):  
I. V. Chashei ◽  
H. J. Fahr

Abstract. In this paper we study the temperatures of electrons convected with the solar wind to large solar distances and finally transported over the solar wind termination shock. Nearly nothing, unless at high energies in the cosmic ray regime, is known about the thermodynamical behaviour of these distant electrons from in~situ plasma observations. Hence it is tacitly assumed these electrons, due to their adiabatic behaviour and vanishing heat conduction or energization processes, have rapidly cooled off to very low temperatures once they eventually arrive at the solar wind termination shock (at about 100 AU). In this paper we show that such electrons, however, at their passage over the termination shock due to the shock–electric field action undergo an over-adiabatic heating and therefore appear on the downstream side as a substantially heated plasma species. Looking quantitatively into this heating process we find that solar wind electrons achieve temperatures of the order of 2–4 × 106 K downstream of the termination shock, depending on the upstream solar wind bulk velocity and the shock compression ratio. Hence these electrons therewith play an important dynamical role in structuring this shock and determining the downstream plasma flow properties. Furthermore, they present an additional ionization source for incoming neutral interstellar hydrogen and excite X-ray emission. They also behave similar to cosmic ray electrons and extend to some limited region upstream of the shock of the order of 0.1 AU by spatial diffusion and thereby also modify the upstream solar wind properties.


2005 ◽  
Vol 23 (4) ◽  
pp. 1499-1504 ◽  
Author(s):  
U. W. Langner ◽  
M. S. Potgieter

Abstract. The effects on the modulation of cosmic ray protons of different positions for the solar wind termination shock and for the heliopause are illustrated for moderate solar maximum conditions. This is done with a numerical model which includes diffusive termination shock acceleration, a heliosheath and drifts. The modulation is computed for the heliospheric equatorial plane and at 35° heliolatitude and for both magnetic polarity cycles of the Sun. It was found that the differences between the modulation for the two solar polarity cycles are less significant at a heliolatitude of 35° than in the equatorial plane. The modulation for the different heliopause positions are qualitatively similar, although there are clear quantitative differences which should be observable with the two Voyager spacecraft in the outer heliosphere. It is illustrated that the motion of the termination shock from 90 AU to 100 AU, with the heliopause fixed at 120 AU, is not crucially important to global modulation. What is of primary importance is the location of the heliopause. It can also be concluded from the results that significant asymmetric modulation is to be expected between the up-wind and down-wind directions of the heliosphere but this may become measureable only when spacecraft move beyond the termination shock into the heliosheath. Keywords. Interplanetary physics (Cosmic rays; Heliopause and solar wind termination) – Space plasma physics (Transport processes)


Sign in / Sign up

Export Citation Format

Share Document