upstream solar wind
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 19)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 3 (1) ◽  
pp. 4
Author(s):  
Anthony P. Rasca ◽  
Shahab Fatemi ◽  
William M. Farrell

Abstract In the solar wind, a low-density wake region forms downstream of the nightside lunar surface. In this study, we use a series of 3D hybrid particle-in-cell simulations to model the response of the lunar wake to a passing coronal mass ejection (CME). Average plasma parameters are derived from the Wind spacecraft located at 1 au during three distinct phases of a passing halo (Earth-directed) CME on 2015 June 22. Each set of plasma parameters, representing the shock/plasma sheath, a magnetic cloud, and plasma conditions we call the mid-CME phase, are used as the time-static upstream boundary conditions for three separate simulations. These simulation results are then compared with results that use nominal solar wind conditions. Results show a shortened plasma void compared to nominal conditions and a distinctive rarefaction cone originating from the terminator during the CME’s plasma sheath phase, while a highly elongated plasma void reforms during the magnetic cloud and mid-CME phases. Developments of electric and magnetic field intensification are also observed during the plasma sheath phase along the central wake, while electrostatic turbulence dominates along the plasma void boundaries and 2–3 lunar radii R M downstream in the central wake during the magnetic cloud and mid-CME phases. The simulations demonstrate that the lunar wake responds in a dynamic way with the changes in the upstream solar wind during a CME.


2021 ◽  
Vol 39 (6) ◽  
pp. 1037-1053
Author(s):  
James H. Lane ◽  
Adrian Grocott ◽  
Nathan A. Case ◽  
Maria-Theresia Walach

Abstract. We present Cluster spacecraft observations from 12 October 2006 of convective plasma flows in the Earth's magnetotail. Earthward flow bursts with a dawnward v⊥y component, observed by Cluster 1 (C1), are inconsistent with the duskward flow that might be expected at the pre-midnight location of the spacecraft. Previous observations have suggested that the dusk–dawn sense of the flow can be governed by the interplanetary magnetic field (IMF) By conditions, with the related “untwisting hypothesis” of magnetotail dynamics commonly invoked to explain this dependence, in terms of a large-scale magnetospheric asymmetry. In the current study, observations of the upstream solar wind conditions from OMNI, magnetic field observations by Cluster and ionospheric convection data using SuperDARN indicate a large-scale magnetospheric morphology consistent with positive IMF By penetration into the magnetotail. At the pre-midnight location of Cluster, however, the dawnward flow observed below the neutral sheet by C1 could only be explained by the untwisting hypothesis in a negative IMF By scenario. The Cluster magnetic field data also reveal a flapping of the magnetotail current sheet, a phenomenon known to influence dusk–dawn flow. Results from the curlometer analysis technique suggest that the dusk–dawn sense of the J×B force was consistent with localised kinks in the magnetic field and the flapping associated with the transient perturbations to the dusk–dawn flow observed by C1. We therefore suggest that the flapping overcame the dusk–dawn sense of the large-scale convection which we would expect to have been net duskward in this case. We conclude that invocation of the untwisting hypothesis may be inappropriate when interpreting intervals of dynamic magnetotail behaviour such as during current sheet flapping, particularly at locations where magnetotail flaring becomes dominant.


2021 ◽  
Author(s):  
Mats Holmstrom

Abstract. We propose a new method to estimate ion escape from unmagnetized planets that combines observations and models. Assuming that upstream solar wind conditions are known, a computer model of the interaction between the solar wind and the planet is executed for different ionospheric ion production rates. This results in different amounts of mass loading of the solar wind. Then we obtain the ion escape rate from the model run that best fit observations of the bow shock location. As an example of the method we estimate the heavy ion escape from Mars on 2015-03-01 to be 2 · 1024 ions per second, using a hybrid plasma model and observations by MAVEN and Mars Express. This method enables studies of how escape depend on different parameters, and also escape rates during extreme solar wind conditions, applicable to studies of escape in the early solar system, and at exoplanets.


2021 ◽  
Author(s):  
James Henry Lane ◽  
Adrian Grocott ◽  
Nathan Anthony Case ◽  
Maria-Theresia Walach

Abstract. Previous observations have provided a clear indication that the dusk-dawn (v⊥y) sense of both slow (< 200 km s−1) and fast (> 200 km s−1) convective magnetotail flows is strongly governed by the Interplanetary Magnetic Field (IMF) By conditions. The related “untwisting hypothesis” of magnetotail dynamics is commonly invoked to explain this dependence, in terms of a large-scale magnetospheric asymmetry. In the current study, we present Cluster spacecraft observations from 12 October 2006 of earthward convective magnetotail plasma flows whose dusk-dawn sense disagrees with the untwisting hypothesis of IMF By control of the magnetotail flows. During this interval, observations of the upstream solar wind conditions from OMNI, and ionospheric convection data using SuperDARN, indicate a large-scale magnetospheric morphology consistent with positive IMF By penetration into the magnetotail. Inspection of the in-situ Cluster magnetic field data reveals a flapping of the magnetotail current sheet; a phenomenon known to influence dusk-dawn flow. Results from the curlometer analysis technique suggest that the dusk-dawn flow perturbations may have been driven by the J x B force associated with a dawnward-propagating flapping of the magnetotail current sheet, locally overriding the expected IMF By control of the flows. We conclude that invocation of the untwisting hypothesis may be inappropriate when interpreting intervals of dynamic magnetotail behaviour such as during current sheet flapping.


Universe ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 152
Author(s):  
Alexei V. Dmitriev ◽  
Bhavana Lalchand ◽  
Sayantan Ghosh

Geoeffective magnetosheath plasma jets (those that interact with the magnetopause) are an important area of research and technology, since they affect the “space-weather” around the Earth. We identified such large-scale magnetosheath plasma jets with a duration of >30 s using plasma and magnetic data acquired from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) multi-spacecraft experiment during the years 2007 to 2009. We present a statistical survey of 554 of such geoeffective jets and elaborate on four mechanisms for the generation of these jets as the upstream solar wind structures of tangential discontinuities (TDs), rotational discontinuities (RDs), the quasi-radial interplanetary magnetic field (rIMF) and the collapsing foreshock (CFS) interrupting the rIMF intervals. We found that 69% of the jets are generated due to the interaction between interplanetary discontinuities (TD: 24%, RD: 25%, CFS: 20%) with the bow shock. Slow and weak jets due to the rIMF contributed to 31% of these jets. The CFS and rIMF were found to be similar in their characteristics. TDs and RDs contributed to most of the fast and powerful jets, with large spatial scales, which might be attributed to transient effects in the travelling foreshock.


2021 ◽  
Author(s):  
Anna Milillo ◽  
Tommaso Alberti ◽  
Stavro L. Ivanovski ◽  
Monica Laurenza ◽  
Stefano Massetti ◽  
...  

&lt;p&gt;The interaction between the interplanetary medium and planetary environments gives rise to different phenomena on several temporal and spatial scales. Here we use the Hilbert-Huang Transform (HHT) to characterize both local and global properties of Mercury's environment as seen during two MESSENGER flybys with different upstream solar wind conditions. Hence, we may infer that the near-Mercury environment presents some different local features with respect to the ambient solar wind, due to both interaction processes and intrinsic structures of the Hermean environment. Our findings support the ion kinetic nature of the Hermean plasma structures, with the magnetosheath being characterized by inhomogeneous ion-kinetic intermittent fluctuations, superimposed to both MHD fluctuations and large-scale field structure. We show that the HHT analysis allow to capture and reproduce some interesting features of the Hermean environment as flux transfer events, Kelvin-Helmholtz vortices, and ULF wave activity, thus providing a suitable method for characterizing physical processes of different nature. Our approach demonstrate to be very promising for the characterization of the structure and dynamics of planetary magnetic field at different scales, for the identification of boundaries, and for discriminating the different scale-dependent features of global and local source processes that can be used for modelling purposes.&lt;/p&gt;


2021 ◽  
Author(s):  
A. L. Elisabeth Werner ◽  
François Leblanc ◽  
Jean-Yves Chaufray ◽  
Ronan Modolo ◽  
Sae Aizawa ◽  
...  

&lt;p&gt;The Mercury plasma environment is enriched in planetary ions from the tenuous neutral exosphere. We have developed a test-particle model which describes the full equation of motion for planetary ions produced from photo-ionization of the neutral exosphere. The new test-particle model is coupled to a Monte Carlo test-particle model of the neutral exosphere (Exospheric Global Model; EGM; Leblanc et al. 2017) and two hybrid-kinetic models: LatHyS (Modolo et al. 2016) and AIKEF (M&amp;#252;ller et al. 2011). This coupling will allow us to consider the impact of non-adiabatic energization on the ion density distribution as well as the connection to seasonal asymmetries in the neutral exosphere.&lt;/p&gt;&lt;p&gt;We compare the density, energy and phase space density distribution of He+, O+ and Na+ from our model with observations from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) time-of-flight spectrometer Fast Imaging Plasma Spectrometer (FIPS; Raines et al. 2013). Our results indicate the presence of several interesting high-density structures both inside and outside FIPS observable energy range (E = 0.05 -13 keV), the properties of which are likely very sensitive to the upstream solar wind conditions. We present how these results may aid the interpretation of FIPS data and future measurements by BepiColombo.&lt;/p&gt;


2021 ◽  
Vol 39 (1) ◽  
pp. 239-253
Author(s):  
Martin Volwerk ◽  
David Mautner ◽  
Cyril Simon Wedlund ◽  
Charlotte Goetz ◽  
Ferdinand Plaschke ◽  
...  

Abstract. The Magnetospheric Multiscale mission (MMS1) data for 8 months in the winter periods of 2017–2018 and 2018–2019, when MMS had its apogee in the upstream solar wind of the Earth's bow shock, are used to study linear magnetic holes (LMHs). These LMHs are characterized by a magnetic depression of more than 50 % and a rotation of the background magnetic field of less then 10∘. A total of 406 LMHs are found and, based on their magnetoplasma characteristics, are split into three categories: cold (increase in density, little change in ion temperature), hot (increase in ion temperature, decrease in density) and sign change (at least one magnetic field component changes sign). The occurrence rate of LMHs is 2.3 per day. All LMHs are basically in pressure balance with the ambient plasma. Most of the linear magnetic holes are found in ambient plasmas that are stable against the mirror-mode generation, but only half of the holes are mirror-mode-stable inside.


2021 ◽  
Author(s):  
Daniel Schmid ◽  
Ferdinand Plaschke ◽  
Yasuhito Narita ◽  
Martin Volwerk ◽  
Rumi Nakamura ◽  
...  

Abstract. The magnetosheath is defined as the plasma region between the bow shock, where the super-magnetosonic solar wind plasma is decelerated and heated, and the outer boundary of the intrinsic planetary magnetic field, the so called magnetopause. Based on the Soucek-Escoubet magnetosheath flow model at Earth, we present the first analytical magnetosheath plasma flow model for Mercury. It can be used to estimate the plasma flow magnitude and direction at any given point in the magnetosheath exclusively on the basis of the plasma parameters of the upstream solar wind. The aim of this paper is to provide a tool to back-trace the magnetosheath plasma flow between multiple observation points or from a given spacecraft location to the bow shock.


2020 ◽  
Author(s):  
Martin Volwerk ◽  
David Mautner ◽  
Cyril Simon Wedlund ◽  
Charlotte Goetz ◽  
Ferdinand Plaschke ◽  
...  

Abstract. The MMS1 data for 8 months in the winter periods of 2017–2018 and 2018–2019, when MMS had its apogee in the upstream solar wind of the Earth's bow shock, are used to study Linear Magnetic Holes (LMHs). These LMHs are characterized by a magnetic depression of more than 50 % and a rotation of the background magnetic field of less then 10°. 426 LMHs are found and, based on their magnetoplasma characteristics, are split into three categories: cold (increase in density, little change in ion temperature), hot (increase in ion temperature, decrease in density) and sign change (at least one magnetic field component changes sign). The occurrence rate of LMHs is 2.3 per day. All LMHs are basically in pressure balance with the ambient plasma. Most of the linear magnetic holes are found in ambient plasmas that are stable against the mirror-mode generation, but only half of the holes are mirror-mode stable inside.


Sign in / Sign up

Export Citation Format

Share Document