diffusive shock acceleration
Recently Published Documents


TOTAL DOCUMENTS

159
(FIVE YEARS 33)

H-INDEX

33
(FIVE YEARS 4)

2021 ◽  
Vol 923 (1) ◽  
pp. 80
Author(s):  
Shanwlee Sow Mondal ◽  
Aveek Sarkar ◽  
Bhargav Vaidya ◽  
Andrea Mignone

Abstract Interplanetary coronal mass ejection (ICME) shocks are known to accelerate particles and contribute significantly to solar energetic particle events. We have performed magnetohydrodynamic-particle in cell simulations of ICME shocks to understand the acceleration mechanism. These shocks vary in Alfvénic Mach numbers as well as in magnetic field orientations (parallel and quasi-perpendicular). We find that diffusive shock acceleration plays a significant role in accelerating particles in a parallel ICME shock. In contrast, shock drift acceleration (SDA) plays a pivotal role in a quasi-perpendicular shock. High-Mach shocks are seen to accelerate particles more efficiently. Our simulations suggest that background turbulence and local particle velocity distribution around the shock can indirectly hint at the acceleration mechanism. Our results also point toward a few possible in situ observations that could validate our understanding of the topic.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1112-1122
Author(s):  
Markus Böttcher

Reinhard Schlickeiser has made groundbreaking contributions to various aspects of blazar physics, including diffusive shock acceleration, the theory of synchrotron radiation, the production of gamma-rays through Compton scattering in various astrophysical sources, etc. This paper, describing the development of a self-consistent shock-in-jet model for blazars with a synchrotron mirror feature, is therefore an appropriate contribution to a Special Issue in honor of Reinhard Schlickeiser’s 70th birthday. The model is based on our previous development of a self-consistent shock-in-jet model with relativistic thermal and non-thermal particle distributions evaluated via Monte-Carlo simulations of diffusive shock acceleration, and time-dependent radiative transport. This model has been very successful in modeling spectral variability patterns of several blazars, but has difficulties describing orphan flares, i.e., high-energy flares without a significant counterpart in the low-frequency (synchrotron) radiation component. As a solution, this paper investigates the possibility of a synchrotron mirror component within the shock-in-jet model. It is demonstrated that orphan flares result naturally in this scenario. The model’s applicability to a recently observed orphan gamma-ray flare in the blazar 3C279 is discussed and it is found that only orphan flares with mild (≲ a factor of 2–3) enhancements of the Compton dominance can be reproduced in a synchrotron-mirror scenario, if no additional parameter changes are invoked.


2021 ◽  
Vol 922 (1) ◽  
pp. 56
Author(s):  
K. Jiang ◽  
S. Y. Huang ◽  
H. S. Fu ◽  
Z. G. Yuan ◽  
X. H. Deng ◽  
...  

Abstract Electron heating/acceleration in the foreshock, by which electrons may be energized beyond thermal energies prior to encountering the bow shock, is very important for the bow shock dynamics. And then these electrons would be more easily injected into a process like diffusive shock acceleration. Many mechanisms have been proposed to explain electrons heating/acceleration in the foreshock. Magnetic reconnection is one possible candidate. Taking advantage of the Magnetospheric Multiscale mission, we present two magnetic reconnection events in the dawnside and duskside ion foreshock region, respectively. Super-Alfvénic electron outflow, demagnetization of the electrons and the ions, and crescent electron distributions in the plane perpendicular to the magnetic field are observed in the sub-ion-scale current sheets. Moreover, strong energy conversion from the fields to the plasmas and significant electron temperature enhancement are observed. Our observations provide direct evidence that magnetic reconnection could occur in the foreshock region and heat/accelerate the electrons therein.


2021 ◽  
Vol 922 (1) ◽  
pp. 1
Author(s):  
Rebecca Diesing ◽  
Damiano Caprioli

Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2, the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝E −2.2) and the very steep spectra of young radio supernovae (∝E −3).


Author(s):  
Siming Liu ◽  
J. Randy Jokipii

The origin of high-energy particles in the Universe is one of the key issues of high-energy solar physics, space science, astrophysics, and particle astrophysics. Charged particles in astrophysical plasmas can be accelerated to very high energies by electric fields. Based on the characteristics of interactions between charged particles and electric fields carried by the background plasma, the mechanisms of charged particle acceleration can be divided into several groups: resonant interactions between plasma waves and particles, acceleration by electric fields parallel to magnetic fields, and acceleration caused by drift of the guiding center of particle gyro-motion around magnetic fields in magnetic field in-homogeneity-related curvature and gradient, etc. According to macroscopic energy conversion mechanisms leading to acceleration of particles, several theories of particle acceleration have been developed: stochastic particle acceleration by turbulent electromagnetic fields, diffusive shock acceleration of particles, and particle acceleration during magnetic re-connections. These theories have their own assumptions and characteristics and find applications in different astrophysical contexts. With advances in high-energy astrophysical observations and in combination with analyses of characteristics of high-energy particle acceleration and radiation, we can better understand the underlying physical processes in dramatically evolving astrophysical environments.


Author(s):  
Anabella T Araudo ◽  
Marco Padovani ◽  
Alexandre Marcowith

Abstract Synchrotron radio emission from non-relativistic jets powered by massive protostars has been reported, indicating the presence of relativistic electrons and magnetic fields of strength ∼0.3 −5 mG. We study diffusive shock acceleration and magnetic field amplification in protostellar jets with speeds between 300 and 1500 km s−1. We show that the magnetic field in the synchrotron emitter can be amplified by the non-resonant hybrid (Bell) instability excited by the cosmic-ray streaming. By combining the synchrotron data with basic theory of Bell instability we estimate the magnetic field in the synchrotron emitter and the maximum energy of protons. Protons can achieve maximum energies in the range 0.04 − 0.65 TeV and emit γ rays in their interaction with matter fields. We predict detectable levels of γ rays in IRAS 16547-5247 and IRAS 16848-4603. The γ ray flux can be significantly enhanced by the gas mixing due to Rayleigh-Taylor instability. The detection of this radiation by the Fermi satellite in the GeV domain and the forthcoming Cherenkov Telescope Array at higher energies may open a new window to study the formation of massive stars, as well as diffusive acceleration and magnetic field amplification in shocks with velocities of about 1000 km s−1.


Author(s):  
G Morlino ◽  
P Blasi ◽  
E Peretti ◽  
P Cristofari

Abstract The origin of cosmic rays in our Galaxy remains a subject of active debate. While supernova remnant shocks are often invoked as the sites of acceleration, it is now widely accepted that the difficulties of such sources in reaching PeV energies are daunting and it seems likely that only a subclass of rare remnants can satisfy the necessary conditions. Moreover the spectra of cosmic rays escaping the remnants have a complex shape that is not obviously the same as the spectra observed at the Earth. Here we investigate the process of particle acceleration at the termination shock that develops in the bubble excavated by star clusters’ winds in the interstellar medium. While the main limitation to the maximum energy in supernova remnants comes from the need for effective wave excitation upstream so as to confine particles in the near-shock region and speed up the acceleration process, at the termination shock of star clusters the confinement of particles upstream in guaranteed by the geometry of the problem. We develop a theory of diffusive shock acceleration at such shock and we find that the maximum energy may reach the PeV region for powerful clusters in the high end of the luminosity tail for these sources. A crucial role in this problem is played by the dissipation of energy in the wind to magnetic perturbations. Under reasonable conditions the spectrum of the accelerated particles has a power law shape with a slope 4÷4.3, in agreement with what is required based upon standard models of cosmic ray transport in the Galaxy.


2021 ◽  
Author(s):  
Kamen Kozarev ◽  
Mohamed Nedal ◽  
Rositsa Miteva ◽  
Pietro Zucca ◽  
Momchil Dechev

<p>The lower and middle solar corona up to about 30 solar radii is thought to be an important region for early acceleration and transport of solar energetic particles (SEPs) by coronal mass ejection-driven shock waves. There, these waves propagate into a highly variable dynamic medium with steep gradients and rapidly expanding coronal magnetic fields, which modulates the particle acceleration near the shock/wave surfaces, and the way SEPs spread into the heliosphere. We present a study modeling the acceleration of SEPs in over 50 separate global coronal shock events between 1 and 30 solar radii. As part of the SPREAdFAST framework project, we analyzed the interaction of off-limb coronal bright fronts (CBF) observed with the SDO/AIA EUV telescope with realistic model coronal plasma based on results from synoptic magnetohydrodynamic (MHD) and differential emission measure (DEM) models. We used realistic quiet-time proton spectra observed near Earth to form seed suprathermal populations accelerated in our diffusive shock acceleration model (Kozarev & Schwadron, 2016). We summarize our findings and present implications for nowcasting SEP acceleration and heliospheric connectivity.</p>


2021 ◽  
Author(s):  
Laxman Adhikari ◽  
Gary Zank ◽  
Lingling Zhao

<p>Recent studies of unusual or atypical energetic particle flux events (AEPEs) observed at 1 au show that another mechanism, different from diffusive shock acceleration, can energize particles locally in the solar wind. The mechanism proposed by Zank et al. is based on the stochastic energization of charged particles in regions filled with numerous small-scale magnetic islands (SMIs) dynamically contracting or merging and experiencing multiple magnetic reconnection in the super-Alfvénic solar wind flow. A first- and second-order Fermi mechanism results from compression-induced changes in the shape of SMIs and their developing dynamics. Charged particles can also be accelerated by the formation of antireconnection electric fields. Observations show that both processes often coexist in the solar wind. The occurrence of SMIs depends on the presence of strong current sheets like the heliospheric current sheet (HCS), and related AEPEs are found to occur within magnetic cavities formed by stream–stream, stream–HCS, or HCS–shock interactions that are filled with SMIs. Previous case studies comparing observations with theoretical predictions were qualitative. Here we present quantitative theoretical predictions of AEPEs based on several events, including a detailed analysis of the corresponding observations. The study illustrates the necessity of accounting for local processes of particle acceleration in the solar wind.</p>


Sign in / Sign up

Export Citation Format

Share Document