Joule heating as an explanation for the differential emission measure structure and systematic redshifts in the sun's lower transition region

1991 ◽  
Vol 379 ◽  
pp. 392 ◽  
Author(s):  
George Roumeliotis
2009 ◽  
Vol 693 (2) ◽  
pp. 1474-1483 ◽  
Author(s):  
U. Feldman ◽  
I. E. Dammasch ◽  
E. Landi

2013 ◽  
Vol 8 (S300) ◽  
pp. 408-409 ◽  
Author(s):  
Elena Dzifčáková ◽  
Šimon Mackovjak ◽  
Petr Heinzel

AbstractThe influence of the electron κ - distributions on the differential emission measure (DEM) of the prominence-corona transition region (PCTR) derived from observed line intensities has been investigated. An important consequence of the κ - distribution is formation of the emission lines in much wider temperature ranges. The implications for the formation temperature of the observed SDO/AIA band emissions are shown.


2012 ◽  
Vol 203 (2) ◽  
pp. 26 ◽  
Author(s):  
C. Guennou ◽  
F. Auchère ◽  
E. Soubrié ◽  
K. Bocchialini ◽  
S. Parenti ◽  
...  

2018 ◽  
Vol 179 ◽  
pp. 545-552
Author(s):  
A. Kepa ◽  
B. Sylwester ◽  
J. Sylwester ◽  
M. Gryciuk ◽  
M. Siarkowski

2018 ◽  
Vol 615 ◽  
pp. A47 ◽  
Author(s):  
Srividya Subramanian ◽  
Vinay L. Kashyap ◽  
Durgesh Tripathi ◽  
Maria S. Madjarska ◽  
John G. Doyle

We study the thermal structure and energetics of the point-like extreme ultraviolet (EUV) brightenings within a system of fan loops observed in the active region AR 11520. These brightenings were simultaneously observed on 2012 July 11 by the High-resolution Coronal (Hi-C) imager and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We identified 27 brightenings by automatically determining intensity enhancements in both Hi-C and AIA 193 Å light curves. The energetics of these brightenings were studied using the Differential Emission Measure (DEM) diagnostics. The DEM weighted temperatures of these transients are in the range log T(K) = 6.2−6.6 with radiative energies ≈1024−25 ergs and densities approximately equal to a few times 109 cm−3. To the best of our knowledge, these are the smallest brightenings in EUV ever detected. We used these results to determine the mechanism of energy loss in these brightenings. Our analysis reveals that the dominant mechanism of energy loss for all the identified brightenings is conduction rather than radiation.


2017 ◽  
Vol 844 (2) ◽  
pp. 163 ◽  
Author(s):  
S. J. Schonfeld ◽  
S. M. White ◽  
R. A. Hock-Mysliwiec ◽  
R. T. J. McAteer

Sign in / Sign up

Export Citation Format

Share Document