A Definition of "Degree of Confirmation"

1945 ◽  
Vol 12 (2) ◽  
pp. 98-115 ◽  
Author(s):  
Carl G. Hempel ◽  
Paul Oppenheim

1956 ◽  
Vol 23 (1) ◽  
pp. 58-62 ◽  
Author(s):  
Hilary Putnam


1955 ◽  
Vol 20 (3) ◽  
pp. 263-273 ◽  
Author(s):  
John G. Kemeny

The question of what constitutes fairness in betting quotients has been studied by Ramsey, deFinetti, and Shimony. Thanks to their combined efforts we now have a satisfactory definition of fairness.On the other hand, the explication of the concept of degree of confirmation (inductive probability) has progressed rapidly in recent years, thanks primarily to Carnap. This explication has usually proceeded by laying down the axioms for frequency-probabilities, and elaborating on these. While in the case where a frequency interpretation is intended these axioms are clearly justified, in our case they have been laid down without any justification. Carnap's presentation has been criticized for just this reason.The purpose of this paper is to show that the probability axioms are necessary and sufficient conditions to assure that the degrees of confirmation form a set of fair betting quotients. In addition it will be shown that one additional, highly controversial, axiom is precisely the condition needed to assure that not only deFinetti's weaker criterion but Shimony's criterion of fairness is also satisfied.



Axiomathes ◽  
2021 ◽  
Author(s):  
Jan Woleński

AbstractThe problem of induction belongs to the most controversial issues in philosophy of science. If induction is understood widely, it covers every fallible inference, that is, such that its conclusion is not logically entailed by its premises. This paper analyses so-called reductive induction, that is, reasoning in which premises follow from the conclusion, but the reverse relation does not hold. Two issues are taken into account, namely the definition of reductive inference and its justification. The analysis proposed in the paper employs metalogical tools. The author agrees with the view that a quantitative account of degree of confirmation for universal theories via logical probability is problematic. However, prospect for a qualitative approach look as more promising. Using the construction of maximally consistent sets allows to distinguish good and worthless induction as well as shows how to understand induction in a semantic way. A closer analysis of deductivism in the theory of justification shows that it is a hidden inductivism.



1945 ◽  
Vol 10 (2) ◽  
pp. 25-60 ◽  
Author(s):  
Olaf Helmer ◽  
Paul Oppenheim

This paper is intended to serve a twofold purpose. Its ultimate aim is the presentation of a syntactical definition of the degree of confirmation of a hypothesis on the basis of given evidence, a notion which is known to be of outstanding significance for the logic of inductive reasoning in the empirical sciences. The theory of confirmation to be developed here has as its foundation the theory of probability, and in order to make that foundation sufficiently secure, it was found expedient to present the theory of probability in axiomatic form and to introduce a syntactical interpretation of probability suitable for the intended application in the theory of confirmation. In this sense then to clarify the logical foundations of probability theory is this paper's first aim.



1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.



1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.



1979 ◽  
Vol 46 ◽  
pp. 125-149 ◽  
Author(s):  
David A. Allen

No paper of this nature should begin without a definition of symbiotic stars. It was Paul Merrill who, borrowing on his botanical background, coined the termsymbioticto describe apparently single stellar systems which combine the TiO absorption of M giants (temperature regime ≲ 3500 K) with He II emission (temperature regime ≳ 100,000 K). He and Milton Humason had in 1932 first drawn attention to three such stars: AX Per, CI Cyg and RW Hya. At the conclusion of the Mount Wilson Ha emission survey nearly a dozen had been identified, and Z And had become their type star. The numbers slowly grew, as much because the definition widened to include lower-excitation specimens as because new examples of the original type were found. In 1970 Wackerling listed 30; this was the last compendium of symbiotic stars published.



Sign in / Sign up

Export Citation Format

Share Document