scholarly journals Subaru Deep Spectroscopy of a Star-forming Companion Galaxy of BR 1202-0725 atz = 4.7

2004 ◽  
Vol 128 (6) ◽  
pp. 2704-2711 ◽  
Author(s):  
Youichi Ohyama ◽  
Yoshiaki Taniguchi ◽  
Yasuhiro Shioya
2019 ◽  
Vol 485 (4) ◽  
pp. 5411-5422 ◽  
Author(s):  
M Arabsalmani ◽  
S Roychowdhury ◽  
T K Starkenburg ◽  
L Christensen ◽  
E Le Floc’h ◽  
...  

ABSTRACT We report Giant Metrewave Radio Telescope (GMRT), Very Large Telescope (VLT), and Spitzer Space Telescope observations of ESO 184−G82, the host galaxy of GRB 980425/SN 1998bw, that yield evidence of a companion dwarf galaxy at a projected distance of 13 kpc. The companion, hereafter GALJ193510-524947, is a gas-rich, star-forming galaxy with a star formation rate of $\rm 0.004\, M_{\odot }\, yr^{-1}$, a gas mass of $10^{7.1\pm 0.1} \, \mathrm{M}_{\odot}$, and a stellar mass of $10^{7.0\pm 0.3} \, \mathrm{M}_{\odot}$. The interaction between ESO 184−G82 and GALJ193510-524947 is evident from the extended gaseous structure between the two galaxies in the GMRT H i 21 cm map. We find a ring of high column density H i gas, passing through the actively star-forming regions of ESO 184−G82 and the GRB location. This ring lends support to the picture in which ESO 184−G82 is interacting with GALJ193510-524947. The massive stars in GALJ193510-524947 have similar ages to those in star-forming regions in ESO 184−G82, also suggesting that the interaction may have triggered star formation in both galaxies. The gas and star formation properties of ESO 184−G82 favour a head-on collision with GALJ193510-524947 rather than a classical tidal interaction. We perform state-of-the-art simulations of dwarf–dwarf mergers and confirm that the observed properties of ESO 184−G82 can be reproduced by collision with a small companion galaxy. This is a very clear case of interaction in a gamma-ray burst host galaxy and of interaction-driven star formation giving rise to a gamma-ray burst in a dense environment.


2002 ◽  
Vol 4 ◽  
pp. 333-333
Author(s):  
S. K. Ghosh ◽  
D. K. Ojha ◽  
R. P. Verma

2019 ◽  
Vol 63 (12) ◽  
pp. 1022-1034
Author(s):  
N. T. Ashimbaeva ◽  
P. Colom ◽  
E. E. Lekht ◽  
M. I. Pashchenko ◽  
G. M. Rudnitskii ◽  
...  
Keyword(s):  

1998 ◽  
Vol 116 (6) ◽  
pp. 2953-2964 ◽  
Author(s):  
Guillem Anglada ◽  
Eva Villuendas ◽  
Robert Estalella ◽  
Maria T. Beltrán ◽  
Luis F. Rodríguez ◽  
...  

1999 ◽  
Vol 118 (5) ◽  
pp. 2409-2423 ◽  
Author(s):  
Christopher J. Dolan and Robert D. Mathieu
Keyword(s):  

1999 ◽  
Vol 515 (1) ◽  
pp. 97-107 ◽  
Author(s):  
Jing Wang ◽  
Timothy M. Heckman ◽  
Matthew D. Lehnert

1998 ◽  
Vol 508 (1) ◽  
pp. 248-261 ◽  
Author(s):  
José M. Vílchez ◽  
Jorge Iglesias‐Páramo

2020 ◽  
Vol 639 ◽  
pp. A80
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Yun-Feng Liang ◽  
Fang-Kun Peng ◽  
Hai-Ming Zhang ◽  
...  

We report the detection of high-energy γ-ray signal towards the young star-forming region, W40. Using 10-yr Pass 8 data from the Fermi Large Area Telescope (Fermi-LAT), we extracted an extended γ-ray excess region with a significance of ~18σ. The radiation has a spectrum with a photon index of 2.49 ± 0.01. The spatial correlation with the ionized gas content favors the hadronic origin of the γ-ray emission. The total cosmic-ray (CR) proton energy in the γ-ray production region is estimated to be the order of 1047 erg. However, this could be a small fraction of the total energy released in cosmic rays (CRs) by local accelerators, presumably by massive stars, over the lifetime of the system. If so, W40, together with earlier detections of γ-rays from Cygnus cocoon, Westerlund 1, Westerlund 2, NGC 3603, and 30 Dor C, supports the hypothesis that young star clusters are effective CR factories. The unique aspect of this result is that the γ-ray emission is detected, for the first time, from a stellar cluster itself, rather than from the surrounding “cocoons”.


Sign in / Sign up

Export Citation Format

Share Document