scholarly journals A Case Study of Low‐Mass Star Formation

2008 ◽  
Vol 174 (1) ◽  
pp. 202-222 ◽  
Author(s):  
Jonathan J. Swift ◽  
William J. Welch
Keyword(s):  
1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

2013 ◽  
Vol 557 ◽  
pp. A35 ◽  
Author(s):  
Eduard I. Vorobyov ◽  
Isabelle Baraffe ◽  
Tim Harries ◽  
Gilles Chabrier

2012 ◽  
Vol 747 (1) ◽  
pp. 22 ◽  
Author(s):  
Charles E. Hansen ◽  
Richard I. Klein ◽  
Christopher F. McKee ◽  
Robert T. Fisher

2010 ◽  
Vol 6 (S270) ◽  
pp. 103-106
Author(s):  
R. Rao ◽  
J.-M. Girart ◽  
D. P. Marrone

AbstractThere have been a number of theoretical and computational models which state that magnetic fields play an important role in the process of star formation. Competing theories instead postulate that it is turbulence which is dominant and magnetic fields are weak. The recent installation of a polarimetry system at the Submillimeter Array (SMA) has enabled us to conduct observations that could potentially distinguish between the two theories. Some of the nearby low mass star forming regions show hour-glass shaped magnetic field structures that are consistent with theoretical models in which the magnetic field plays a dominant role. However, there are other similar regions where no significant polarization is detected. Future polarimetry observations made by the Submillimeter Array should be able to increase the sample of observed regions. These measurements will allow us to address observationally the important question of the role of magnetic fields and/or turbulence in the process of star formation.


1991 ◽  
Vol 376 ◽  
pp. 636 ◽  
Author(s):  
Harold M. Butner ◽  
Neal J., II Evans ◽  
Daniel F. Lester ◽  
Russell M. Levreault ◽  
Stephen E. Strom

2003 ◽  
Vol 587 (1) ◽  
pp. 407-422 ◽  
Author(s):  
Laird M. Close ◽  
Nick Siegler ◽  
Melanie Freed ◽  
Beth Biller

2019 ◽  
Vol 622 ◽  
pp. A54 ◽  
Author(s):  
Thushara Pillai ◽  
Jens Kauffmann ◽  
Qizhou Zhang ◽  
Patricio Sanhueza ◽  
Silvia Leurini ◽  
...  

The infrared dark clouds (IRDCs) G11.11−0.12 and G28.34+0.06 are two of the best-studied IRDCs in our Galaxy. These two clouds host clumps at different stages of evolution, including a massive dense clump in both clouds that is dark even at 70 and 100 μm. Such seemingly quiescent massive dense clumps have been speculated to harbor cores that are precursors of high-mass stars and clusters. We observed these two “prestellar” regions at 1 mm with the Submillimeter Array (SMA) with the aim of characterizing the nature of such cores. We show that the clumps fragment into several low- to high-mass cores within the filamentary structure of the enveloping cloud. However, while the overall physical properties of the clump may indicate a starless phase, we find that both regions host multiple outflows. The most massive core though 70 μm dark in both clumps is clearly associated with compact outflows. Such low-luminosity, massive cores are potentially the earliest stage in the evolution of a massive protostar. We also identify several outflow features distributed in the large environment around the most massive core. We infer that these outflows are being powered by young, low-mass protostars whose core mass is below our detection limit. These findings suggest that low-mass protostars have already formed or are coevally formed at the earliest phase of high-mass star formation.


Sign in / Sign up

Export Citation Format

Share Document