infrared dark clouds
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 10)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 921 (1) ◽  
pp. 96
Author(s):  
Mengyao Liu ◽  
Jonathan C. Tan ◽  
Joshua Marvil ◽  
Shuo Kong ◽  
Viviana Rosero ◽  
...  

2021 ◽  
Vol 21 (8) ◽  
pp. 208
Author(s):  
Jin-Jin Xie ◽  
Jing-Wen Wu ◽  
Gary A. Fuller ◽  
Nicolas Peretto ◽  
Zhi-Yuan Ren ◽  
...  

2021 ◽  
Vol 64 (7) ◽  
Author(s):  
Jinjin Xie ◽  
Gary A. Fuller ◽  
Di Li ◽  
Longfei Chen ◽  
Zhiyuan Ren ◽  
...  

2020 ◽  
Vol 905 (1) ◽  
pp. 78
Author(s):  
Hanbo Yu ◽  
Junfeng Wang ◽  
Jonathan C. Tan

2020 ◽  
Vol 499 (2) ◽  
pp. 1666-1681
Author(s):  
G Cosentino ◽  
I Jiménez-Serra ◽  
J D Henshaw ◽  
P Caselli ◽  
S Viti ◽  
...  

ABSTRACT Infrared dark clouds (IRDCs) are very dense and highly extincted regions that host the initial conditions of star and stellar cluster formation. It is crucial to study the kinematics and molecular content of IRDCs to test their formation mechanism and ultimately characterize these initial conditions. We have obtained high-sensitivity Silicon Monoxide, SiO(2–1), emission maps towards the six IRDCs, G018.82–00.28, G019.27+00.07, G028.53–00.25, G028.67+00.13, G038.95–00.47, and G053.11+00.05 (cloud A, B, D, E, I, and J, respectively), using the 30-m antenna at the Instituto de Radioastronomía Millimétrica (IRAM30m). We have investigated the SiO spatial distribution and kinematic structure across the six clouds to look for signatures of cloud–cloud collision events that may have formed the IRDCs and triggered star formation within them. Towards clouds A, B, D, I, and J, we detect spatially compact SiO emission with broad-line profiles that are spatially coincident with massive cores. Towards the IRDCs A and I, we report an additional SiO component that shows narrow-line profiles and that is widespread across quiescent regions. Finally, we do not detect any significant SiO emission towards cloud E. We suggest that the broad and compact SiO emission detected towards the clouds is likely associated with ongoing star formation activity within the IRDCs. However, the additional narrow and widespread SiO emission detected towards cloud A and I may have originated from the collision between the IRDCs and flows of molecular gas pushed towards the clouds by nearby H ii regions.


2020 ◽  
Vol 499 (2) ◽  
pp. 1805-1822
Author(s):  
P W Lucas ◽  
J Elias ◽  
S Points ◽  
Z Guo ◽  
L C Smith ◽  
...  

ABSTRACT We report the discovery of a mid-infrared outburst in a young stellar object (YSO) with an amplitude close to 8 mag at λ ≈ 4.6 μm. WISEA J142238.82−611553.7 is one of 23 highly variable Wide-field Infrared Survey Explorer (WISE) sources discovered in a search of infrared dark clouds (IRDCs). It lies within the small IRDC G313.671−0.309 (d ≈2.6 kpc), seen by the Herschel/Hi-Gal survey as a compact massive cloud core that may have been measurably warmed by the event. Pre-outburst data from Spitzer in 2004 suggest it is a class I YSO, a view supported by observation of weak 2.12 μm H2 emission in an otherwise featureless red continuum spectrum in 2019 (6 mag below the peak in Ks). Spitzer, WISE, and VISTA Variables in the Via Lactea (VVV) data show that the outburst began by 2006 and has a duration >13 yr, with a fairly flat peak from 2010 to 2014. The low pre-outburst luminosity implies a low-mass progenitor. The outburst luminosity of a few × 102 L⊙ is consistent with an accretion rate $\dot{M} \approx 10^{-4}$ M⊙yr−1, comparable to a classical FU Orionis event. The 4.6 μm peak in 2010 implies T = 800–1000 K and a disc radial location R ≈ 4.5 au for the emitting region. The colour evolution suggests subsequent progression outwards. The apparent absence of the hotter matter expected in thermal instability or MRI models may be due to complete obscuration of the innermost disc, e.g. by an edge-on disc view. Alternatively, disc fragmentation/infalling fragment models might more naturally explain a mid-infrared peak, though this is not yet clear.


2020 ◽  
Vol 897 (1) ◽  
pp. 53 ◽  
Author(s):  
R. Retes-Romero ◽  
Y. D. Mayya ◽  
A. Luna ◽  
L. Carrasco

2020 ◽  
Vol 496 (3) ◽  
pp. 3482-3501 ◽  
Author(s):  
N Peretto ◽  
A Rigby ◽  
Ph André ◽  
V Könyves ◽  
G Fuller ◽  
...  

ABSTRACT The mass growth of protostars is a central element to the determination of fundamental stellar population properties such as the initial mass function. Constraining the accretion history of individual protostars is therefore an important aspect of star formation research. The goal of the study presented here is to determine whether high-mass (proto)stars gain their mass from a compact (<0.1 pc) fixed-mass reservoir of gas, often referred to as dense cores, in which they are embedded, or whether the mass growth of high-mass stars is governed by the dynamical evolution of the parsec-scale clump that typically surrounds them. To achieve this goal, we performed a 350-μm continuum mapping of 11 infrared dark clouds, along side some of their neighbouring clumps, with the ArTéMiS camera on APEX. By identifying about 200 compact ArTéMiS sources, and matching them with Herschel Hi-GAL 70 -μm sources, we have been able to produce mass versus temperature diagrams. We compare the nature (i.e. starless or protostellar) and location of the ArTéMiS sources in these diagrams with modelled evolutionary tracks of both core-fed and clump-fed accretion scenarios. We argue that the latter provide a better agreement with the observed distribution of high-mass star-forming cores. However, a robust and definitive conclusion on the question of the accretion history of high-mass stars requires larger number statistics.


2019 ◽  
Vol 622 ◽  
pp. A54 ◽  
Author(s):  
Thushara Pillai ◽  
Jens Kauffmann ◽  
Qizhou Zhang ◽  
Patricio Sanhueza ◽  
Silvia Leurini ◽  
...  

The infrared dark clouds (IRDCs) G11.11−0.12 and G28.34+0.06 are two of the best-studied IRDCs in our Galaxy. These two clouds host clumps at different stages of evolution, including a massive dense clump in both clouds that is dark even at 70 and 100 μm. Such seemingly quiescent massive dense clumps have been speculated to harbor cores that are precursors of high-mass stars and clusters. We observed these two “prestellar” regions at 1 mm with the Submillimeter Array (SMA) with the aim of characterizing the nature of such cores. We show that the clumps fragment into several low- to high-mass cores within the filamentary structure of the enveloping cloud. However, while the overall physical properties of the clump may indicate a starless phase, we find that both regions host multiple outflows. The most massive core though 70 μm dark in both clumps is clearly associated with compact outflows. Such low-luminosity, massive cores are potentially the earliest stage in the evolution of a massive protostar. We also identify several outflow features distributed in the large environment around the most massive core. We infer that these outflows are being powered by young, low-mass protostars whose core mass is below our detection limit. These findings suggest that low-mass protostars have already formed or are coevally formed at the earliest phase of high-mass star formation.


Sign in / Sign up

Export Citation Format

Share Document