scholarly journals Dynamics of Dense Cores in the Perseus Molecular Cloud

2007 ◽  
Vol 668 (2) ◽  
pp. 1042-1063 ◽  
Author(s):  
Helen Kirk ◽  
Doug Johnstone ◽  
Mario Tafalla
Keyword(s):  
2020 ◽  
Vol 635 ◽  
pp. A34 ◽  
Author(s):  
V. Könyves ◽  
Ph. André ◽  
D. Arzoumanian ◽  
N. Schneider ◽  
A. Men’shchikov ◽  
...  

We present a detailed study of the Orion B molecular cloud complex (d ~ 400 pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70 to 500 μm as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC 2023 and 2024, NGC 2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490–804 (~28−45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be tpreOrionB = 1.7−0.6+0.8Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5 M⊙ (in dN/dlogM format) and is consistent with a power-law with logarithmic slope −1.27 ± 0.24 at the high-mass end, compared to the Salpeter slope of − 1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value AVbg ~ 7 mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at AVbg < 5 and a regime with higher, roughly constant CFE at AVbg ≳ 10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above AVbg ≳ 7 mag. About 60–80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.


1991 ◽  
Vol 147 ◽  
pp. 205-209
Author(s):  
Bruce G. Elmegreen

The broad line wings in molecular cloud spectra are proposed to result from strong magnetic waves on the periphery of dense cores and in the intercore regions where the Alfvén velocity should be larger than average. The observed line profiles are reproduced by a simple but realistic model, and the ratio of the broad to the narrow line components is found to equal approximately three, independent of cloud parameters, as long as the core/intercore contrast in the local average density is sufficiently large. Interactions between the magnetic waves should produce dense clumps in the non-linear splash regions between converging flows.


1991 ◽  
Vol 147 ◽  
pp. 229-233
Author(s):  
Alwyn Wootten

About a dozen distinct dense cores have been identified in the Rho Ophiuchi molecular cloud. The properties of these cores are summarized and compared to the properties of cores in the Taurus molecular cloud, a less efficient region of star formation, and in DR21(OH), a more massive region of star formation. The data are consistent with a picture in which more massive clouds have a higher surface density of cores, which in turn are more massive. The adjacent cores in L1689N have been studied with very high resolution; one has formed stars and one never has. The structure of these cores shows a tendency for duplicity of structures from the largest scales (1 pc) to the smallest (50 AU).


1999 ◽  
Vol 51 (6) ◽  
pp. 911-918 ◽  
Author(s):  
Yoshinori Yonekura ◽  
Norikazu Mizuno ◽  
Hiro Saito ◽  
Akira Mizuno ◽  
Hideo Ogawa ◽  
...  
Keyword(s):  

1991 ◽  
Vol 147 ◽  
pp. 500-501
Author(s):  
K. Sunada ◽  
T. Hasegawa ◽  
M. Hayashi ◽  
Y. Fukui ◽  
K. Sugitani

We mapped 5 dense cores in the Cepheus molecular cloud in the optically thin C18O (J = 1 — 0) line using the 45-m telescope at Nobeyama and derived density profiles around those cores assuming spherical symmetry. Cloud cores are selected from the 13CO (J = 1 — 0) map obtained through the unbiased survey program with the 4-m telescope at Nagoya university.


1991 ◽  
Vol 147 ◽  
pp. 229-233
Author(s):  
Alwyn Wootten

About a dozen distinct dense cores have been identified in the Rho Ophiuchi molecular cloud. The properties of these cores are summarized and compared to the properties of cores in the Taurus molecular cloud, a less efficient region of star formation, and in DR21(OH), a more massive region of star formation. The data are consistent with a picture in which more massive clouds have a higher surface density of cores, which in turn are more massive. The adjacent cores in L1689N have been studied with very high resolution; one has formed stars and one never has. The structure of these cores shows a tendency for duplicity of structures from the largest scales (1 pc) to the smallest (50 AU).


Sign in / Sign up

Export Citation Format

Share Document