Volcanic Arc Magmas: Implications of a Melting-Mixing Model for Element Recycling in the Crust-Upper Mantle System

1980 ◽  
Vol 88 (5) ◽  
pp. 497-522 ◽  
Author(s):  
Robert W. Kay
2016 ◽  
Vol 121 (8) ◽  
pp. 5624-5640 ◽  
Author(s):  
Y. Su ◽  
Christian Huber ◽  
Olivier Bachmann ◽  
Zoltán Zajacz ◽  
Heather Wright ◽  
...  
Keyword(s):  

2016 ◽  
Vol 176 ◽  
pp. 44-80 ◽  
Author(s):  
Kei Shimizu ◽  
Alberto E. Saal ◽  
Corinne E. Myers ◽  
Ashley N. Nagle ◽  
Erik H. Hauri ◽  
...  

2010 ◽  
Vol 47 (5) ◽  
pp. 565-589 ◽  
Author(s):  
Derek Wyman ◽  
Robert Kerrich

The Abitibi and Wawa subprovinces of the southern Superior Province differ in terms of the extent of pre-existing 2750 Ma sialic crust and relationships between mantle plume type (tholeiitic basalt – komatiite) and arc type (tholeiite to calc-alkaline basalt – andesite – dacite – rhyolite) volcanic successions but evolved in close proximity to each other. Isotopic data, evidence from the Kapuskasing uplift, continuation of major structures associated with large gold deposits from the Abitibi into the Wawa subprovince and the related occurrence of diamonds in lamprophyric rocks in both subprovinces point to a common evolution prior to and during orogeny. Differences preserved in supracrustal sequences of the two subprovinces suggest that the main petrogenetic controls on orogenic gold deposits and lamprophyre-hosted diamond deposits lay in the lower crust and upper mantle. Similar processes must also have been active where gold and diamonds are associated on other Archean cratons, such as the Slave and possibly the Kaapvaal craton. Based on evidence preserved in the Abitibi–Wawa orogen, rapid crustal growth at ∼2.7 Ga was linked to the interplay between plate tectonics and mantle plumes. Key indicators in the model developed for the Abitibi–Wawa arc are the co-existence of plume-related rock types, modern-style adakites, major gold deposits, and lamprophyre-hosted diamond occurrences, at least in cases where shoshonitic host magmas can ascend rapidly through the crust. All of these indicators are now identified on the Kaapvaal craton by 3.1 Ga and many recur together in Paleoproterzoic and younger terranes, suggesting a common mechanism for rapid crustal growth through much of Earth’s history. The variety of granitoid types found within the Abitibi–Wawa orogen demonstrates that local tectonic factors, rather than a hotter average upper mantle, were important in controlling the type of magmas formed. Based on the geodynamic history of the subprovince, mantle plume interaction with an existing volcanic arc and the subduction of oceanic plateau crust played an important role in the formation of magmas similar to Cenozoic adakites. Flat subduction beneath a mantle wedge was probably responsible for the generation of the adakites and also promoted diamond stability at shallow depths while enhancing the reservoirs for subsequent orogenic gold deposits. The history of magmatism and mineralization in the Abitibi and Wawa subprovinces precludes an early or gradual development of a cratonic keel, which instead must have coupled with crust during the latest stages of orogeny.


2020 ◽  
Author(s):  
Nore Stolte ◽  
Junting Yu ◽  
Zixin Chen ◽  
Dimitri A. Sverjensky ◽  
Ding Pan

The water-gas shift reaction is a key reaction in Fischer-Tropsch-type synthesis, which is widely believed to generate hydrocarbons in the deep carbon cycle, but is little known at extreme pressure-temperature conditions found in Earth’s upper mantle. Here, we performed extensive ab initio molecular dynamics simulations and free energy calculations to study the water-gas shift reaction. We found the direct formation of formic acid out of CO and supercritical water at 10∼13 GPa and 1400 K without any catalyst. Contrary to the common assumption that formic acid or formate is an intermediate product, we found that HCOOH is thermodynamically more stable than the products of the water-gas shift reaction above 3 GPa and at 1000∼1400 K. Our study suggests that the water-gas shift reaction may not happen in Earth’s upper mantle, and formic acid or formate may be an important carbon carrier, participating in many geochemical processes in deep Earth.<br>


Sign in / Sign up

Export Citation Format

Share Document