lesser antilles
Recently Published Documents


TOTAL DOCUMENTS

1049
(FIVE YEARS 171)

H-INDEX

56
(FIVE YEARS 5)

2022 ◽  
Vol 579 ◽  
pp. 117343
Author(s):  
Belle Philibosian ◽  
Nathalie Feuillet ◽  
Jennifer Weil-Accardo ◽  
Eric Jacques ◽  
Abel Guihou ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
G. F. Cooper ◽  
E. C. Inglis

Lavas produced at subduction zones represent the integration of both source heterogeneity and an array of crustal processes, such as: differentiation; mixing; homogenisation; assimilation. Therefore, unravelling the relative contribution of the sub-arc mantle source versus these crustal processes is difficult when using the amalgamated end products in isolation. In contrast, plutonic xenoliths provide a complementary record of the deeper roots of the magmatic plumbing system and provide a unique record of the true chemical diversity of arc crust. Here, we present the δ56Fe record from well characterised plutonic xenoliths from two distinct volcanic centres in the Lesser Antilles volcanic arc–the islands of Martinique and Statia. The primary objective of this study is to test if the Fe isotope systematics of arc lavas are controlled by sub-arc mantle inputs or during subsequent differentiation processes during a magma’s journey through volcanic arc crust. The Fe isotopic record, coupled to petrology, trace element chemistry and radiogenic isotopes of plutonic xenoliths from the two islands reveal a hidden crustal reservoir of heavy Fe that previously hasn’t been considered. Iron isotopes are decoupled from radiogenic isotopes, suggesting that crustal and/or sediment assimilation does not control the Fe systematics of arc magmas. In contrast to arc lavas, the cumulates from both islands record MORB-like δ56Fe values. In Statia, δ56Fe decreases with major and trace element indicators of differentiation (SiO2, Na2O + K2O, Eu/Eu*, Dy/Yb), consistent with fractionating mineral assemblages along a line of liquid descent. In Martinique, δ56Fe shows no clear relationship with most indicators of differentiation (apart from Dy/Yb), suggesting that the δ56Fe signature of the plutonic xenoliths has been overprinted by later stage processes, such as percolating reactive melts. Together, these data suggest that magmatic processes within the sub-arc crust overprint any source variation of the sub-arc mantle and that a light Fe source is not a requirement to produce the light Fe isotopic compositions recorded in volcanic arc lavas. Therefore, whenever possible, the complimentary plutonic record should be considered in isotopic studies to understand the relative control of the mantle source versus magmatic processes in the crust.


2021 ◽  
Vol 46 (4) ◽  
pp. 87-110
Author(s):  
Michele Hayward ◽  
Michael Cinquino ◽  
Frank Schieppati ◽  
Donald Smith

Espenshade (2014) has argued that pre-Columbian major ballcourts/plazas on Puerto Rico, particularly with rock art, could be considered special religious places. He proposes that these precincts were being transformed from locations of communal social and ceremonial activities integrating diverse population segments to increasingly restricted-to-religious functions as shrines or pilgrimage centers serving a greatly reduced local population by the end of the pre-colonial period. The extent of incorporation of pre-colonial late phase plazas into a formal pilgrimage round for the Puerto Rico island will be examined employing archaeological data from both the Greater and Lesser Antilles. We conclude that while Espenshade’s particular argument for enclosures-as-pilgrimage sites may or may not be appropriate, simply raising the issue prompts a wider consideration of the region’s ritual structure involving rock art and non-rock art sites.


Author(s):  
Mélanie Noury ◽  
Mélody Philippon ◽  
Jean‐Jacques Cornée ◽  
Matthias Bernet ◽  
Olivier Bruguier ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Caroline Martel ◽  
Michel Pichavant ◽  
Hélène Balcone-Boissard ◽  
Georges Boudon

A prerequisite in refining volcanic hazard at explosive volcanoes is a better quantification of the timescales of the syn-eruptive processes, such as magma degassing and crystallization prior to eruption. To this aim, new data on the matrices (microlites, residual glasses, and bubbles) of pumice, scoria, and dense clasts erupted during the AD 1530 andesitic eruption of La Soufrière of Guadeloupe are combined with published data from phase-equilibrium and kinetic experiments, in order to estimate pressures of microlite crystallization and magma ascent rates. From the timescale data, we infer that the AD 1530 eruption started with phreatomagmatic explosions tapping magmas that ascended during about 1 month (decompression rate of ∼50 Pa/s) from the coldest parts of the reservoir (∼825°C and a 74 wt% SiO2 melt). These magmas continuously crystallized microlites (∼25 vol% plagioclase, orthopyroxene, clinopyroxene, magnetite, quartz, and apatite), but did not outgas likely due to sealed conduit margins. The flank collapse (preexisting “cold” edifice) that followed the phreatomagmatic phase triggered a sub-Plinian eruption that progressively tapped the hotter main reservoir (∼875°C and 71 wt% SiO2 interstitial melt), emitting banded and homogeneous pumice. The banded pumice did not significantly outgas and mostly lack decompression-induced microlites, suggesting short ascent durations of the order of 0.5–1 day (decompression rates of 1,400–4,000 Pa/s). The following Strombolian phase emitted dark scoria that did not significantly outgas and only crystallized rare microlites, suggesting ascent duration of the order of 2 days (decompression rates of ∼550 Pa/s). The terminal lava dome growth involved fully outgassed magmas ascended during more than 1 month, giving time for microlite crystallization (∼40 vol% plagioclase, orthopyroxene, clinopyroxene, magnetite, and cristobalite). The detection of any shallow new magmatic intrusion is crucial, since it can trigger a sequence of conduit processes leading to an eruption marked by a succession of different and disastrous eruptive styles, following a scenario similar to the AD 1530 eruption. Overall, we provide a combined approach of petrological, geochemical, and experimental data that may be used to infer ascent conditions and rates at other volcanic systems.


2021 ◽  
Author(s):  
Didier Clément Bernard ◽  
Emmanuel Biabiany ◽  
Raphaël Cécé ◽  
Romual Chery ◽  
Naoufal Sekkat

Abstract. The massive Sargassum algae strandings observed over the past decade are the new natural hazard that currently impacts the island states of the Caribbean region (human health, environmental damages, and economic losses). This study aims to improve the prediction of the surface current dynamic leading to beachings in the Lesser Antilles, using clustering analysis methods. The input surface currents including windage effect were derived from the Mercator model and the Hybrid Coordinate Ocean Model (HYCOM). Past daily observations of Sargassum stranding on Guadeloupe coasts were also integrated. Four representative current regimes were identified for both Mercator and HYCOM data. The analysis of the backward current sequences leading to strandings showed that the recurrence of two current regimes is related to the beaching peaks observed respectively in March and in August. A decision tree classifier was built and its accuracy reaches 73.3 % with 0.04°-scale HYCOM data and 50.8 % with 0.08°-scale Mercator data. This significant accuracy difference highlights the need of very small-scale current data (i.e., lower than 5 km scale) to assess coastal Sargassum hazard in the Lesser Antilles. The present clustering analysis predictive system would help improve this risk management in the islands of this region.


Sign in / Sign up

Export Citation Format

Share Document