mixing model
Recently Published Documents


TOTAL DOCUMENTS

751
(FIVE YEARS 167)

H-INDEX

54
(FIVE YEARS 6)

Author(s):  
Jakub Janský ◽  
Zbyněk Koldovský ◽  
Jiří Málek ◽  
Tomáš Kounovský ◽  
Jaroslav Čmejla

AbstractIn this paper, we propose a novel algorithm for blind source extraction (BSE) of a moving acoustic source recorded by multiple microphones. The algorithm is based on independent vector extraction (IVE) where the contrast function is optimized using the auxiliary function-based technique and where the recently proposed constant separating vector (CSV) mixing model is assumed. CSV allows for movements of the extracted source within the analyzed batch of recordings. We provide a practical explanation of how the CSV model works when extracting a moving acoustic source. Then, the proposed algorithm is experimentally verified on the task of blind extraction of a moving speaker. The algorithm is compared with state-of-the-art blind methods and with an adaptive BSE algorithm which processes data in a sequential manner. The results confirm that the proposed algorithm can extract the moving speaker better than the BSE methods based on the conventional mixing model and that it achieves improved extraction accuracy than the adaptive method.


2021 ◽  
Vol 25 (12) ◽  
pp. 6407-6420
Author(s):  
Chang-Hwan Park ◽  
Aaron Berg ◽  
Michael H. Cosh ◽  
Andreas Colliander ◽  
Andreas Behrendt ◽  
...  

Abstract. The prevalent soil moisture probe algorithms are based on a polynomial function that does not account for the variability in soil organic matter. Users are expected to choose a model before application: either a model for mineral soil or a model for organic soil. Both approaches inevitably suffer from limitations with respect to estimating the volumetric soil water content in soils with a wide range of organic matter content. In this study, we propose a new algorithm based on the idea that the amount of soil organic matter (SOM) is related to major uncertainties in the in situ soil moisture data obtained using soil probe instruments. To test this theory, we derived a multiphase inversion algorithm from a physically based dielectric mixing model capable of using the SOM amount, performed a selection process from the multiphase model outcomes, and tested whether this new approach improves the accuracy of soil moisture (SM) data probes. The validation of the proposed new soil probe algorithm was performed using both gravimetric and dielectric data from the Soil Moisture Active Passive Validation Experiment in 2012 (SMAPVEX12). The new algorithm is more accurate than the previous soil-probe algorithm, resulting in a slightly improved correlation (0.824 to 0.848), 12 % lower root mean square error (RMSE; 0.0824 to 0.0727 cm3 cm−3), and 95 % less bias (−0.0042 to 0.0001 cm3 cm−3). These results suggest that applying the new dielectric mixing model together with global SOM estimates will result in more reliable soil moisture reference data for weather and climate models and satellite validation.


2021 ◽  
Vol 25 (12) ◽  
pp. 6261-6281
Author(s):  
Maxime Gillet ◽  
Corinne Le Gal La Salle ◽  
Pierre Alain Ayral ◽  
Somar Khaska ◽  
Philippe Martin ◽  
...  

Abstract. The increasing severity of hydrological droughts in the Mediterranean basin related to climate change raises the need to understand the processes sustaining low flow. The purpose of this paper is to evaluate simple mixing model approaches, first to identify and then to quantify streamflow contribution during low-water periods. An approach based on the coupling of geochemical data with hydrological data allows the quantification of flow contributions. In addition, monitoring during the low-water period was used to investigate the drying-up trajectory of each geological reservoir individually. Data were collected during the summers of 2018 and 2019 on a Mediterranean river (Gardon de Sainte-Croix). The identification of the end-members was performed after the identification of a groundwater geochemical signature clustered according to the geological nature of the reservoir. Two complementary methods validate further the characterisation: rock-leaching experiments and unsupervised classification (k-means). The use of the end-member mixture analysis (EMMA) coupled with a generalised likelihood uncertainty estimate (GLUE) (G-EMMA) mixing model coupled with hydrological monitoring of the main river discharge rate highlights major disparities in the contribution of the geological units, showing a reservoir with a minor contribution in high flow becoming preponderant during the low-flow period. This finding was revealed to be of the utmost importance for the management of water resources during the dry period.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3161
Author(s):  
Alissa Vera ◽  
Edwin Pino-Vargas ◽  
Mahendra P. Verma ◽  
Samuel Chucuya ◽  
Eduardo Chávarri ◽  
...  

The La Yarada aquifer is the primary water resource for municipal, irrigation, and industrial uses in the semi-arid Tacna, Peru. Presently, over-pumping has caused severe groundwater management problems, including the abandonment of saline water wells. This study presents multivariate analysis and chemical–isotopic trends in water to investigate seawater intrusion and hydrogeological processes affecting water quality. The chemical and isotopic analysis of water samples, collected in two campaigns in the dry (August 2020) and wet (November 2020) seasons, together with the 1988 data, were evaluated with a mixing model, cluster, and factor analysis. The hydrochemical and isotopic mixing model suggested the formation of a wedge with 20% seawater intrusion. The heterogeneity of piezometric map isolines corroborates the wedge formation associated with the groundwater movement. The spatial distributions of factors, FA1 and FA2, suggest two processes of seawater front movement: dispersion (diffusion) of chemical elements and different types of water mixing, respectively. At the edge of the La Yarada aquifer, the water head was relatively low, permitting seawater and freshwater mixing. On the other hand, along the sea-land boundary, the water head of the La Yarada aquifer was relatively high, avoiding seawater and freshwater mixing; however, the chemical species were migrating from the seawater to the groundwater due to the diffusion processes. The cluster 4 samples are in the region corresponding to the isotopic mixing process represented by the FA2, while cluster 4 describes the chemical diffusion process represented by the FA2. Thus, the integrated approach is helpful to assess the seawater intrusion mechanisms in coastal aquifers in a semi-arid region.


2021 ◽  
Author(s):  
◽  
Jordan Katherine Miller

Sediment source fingerprinting using environmental magnetism has successfully differentiated between sediment sources in different regions of South Africa. The method was applied in the natural landscape of the Kruger National Park to trace sediment sources delivered to four reservoirs (Hartbeesfontein, Marheya, Nhlanganzwani, Silolweni) whose contributing catchments were underlain by a range of igneous, metamorphic, and sedimentary rocks. This research attempted to evaluate the impact of vegetation, lithology, and particle size controls on the ability of magnetic signatures to discriminate between lithology-defined potential sources. Potential source samples were collected from each lithology present in all catchments, except for the Lugmag catchment where the lithology was uniform, but the vegetation type varied significantly between woodland and grassland. One sediment core was taken in each of the four catchment reservoirs where there was more than one lithology present in order to unmix and apportion contributing sediment sources. Sampling time in the field was often restricted to short periods, dependent on anti-poaching activities and movement of free-roaming wildlife across the Park. This occasionally led to the sub-optimal collection of enough source samples to capture source signature variability. Mineral magnetic parameters were unable to discriminate between vegetation-defined sediment sources in the Lugmag catchment (homogenous underlying lithology) but were able to discriminate between lithology-defined sediment sources (to varying degrees) in the other four catchments. The contributions of each lithology-defined sediment source were estimated using a straightforward statistical protocol frequently used in published literature that included a Mann-Whitney U or Kruskal-Wallis H test, mass conservation test, discriminant function analysis, and an (un)mixing model. A contribution from each lithology source to reservoir sediment was estimated. Connectivity was a significant factor in understanding erosion in each of the catchments. Both longitudinal (e.g., drainage density) and lateral connectivity (e.g., floodplain - river) were important. Travel distance of eroded sediment to reservoirs was also an essential element in two of the four catchments. There are no defined floodplains, so channel bank soils are very similar to the catchment soils. Therefore, channel bank storage potential would be similar to the storage potential within the catchment. Vegetation played a crucial role in protecting soils, by reducing ii erosion potential as well as trapping and storing sediment, thereby interrupting lateral connectivity. Underlying geology and soils are determining factors of vegetation type and density. A published study estimated catchment area-specific sediment yields for different KNP catchments, including the Hartbeesfontein, Marheya, Nhlanganzwani and Silolweni catchments. The published data was used in combination with the (un)mixing model source contribution estimates of this thesis to determine specific sediment yields by lithology, i.e., for each catchment source. The polymodal particle size characteristics of the sample material led to an investigation into particle size controls on the ability of magnetic signatures to discriminate between potential sources. Due to time constraints, only the Hartbeesfontein and Marheya catchments were tested for grain size differences. For each catchment, one bulk sample was created for each lithology source. This bulk sample was divided into 10 subsamples. The samples were then fractionated into four particle size fraction groups: coarse (250 – 500 μm), medium (125 – 250 μm), fine (63 – 125 μm), and very fine (<63 μm). Reservoir samples were also bulked to create 10 down-core samples for each reservoir, and the samples were also fractionated into the four fraction groups. The same statistical protocol was applied to the fractionated samples and contribution estimates were obtained by lithology for each particle size fraction group. The goodness of fit and uncertainty of the (un)mixing model varied in each catchment, with the two measures of accuracy often showing an inverse relationship. The fractionated modelling estimated the same primary source in the two catchments as in the unfractionated modelling. However, additional information on the secondary and tertiary sources was obtained. Connectivity remained a significant factor in interpreting the results of the fractionated analysis. Specific sediment yields were estimated for each catchment source per particle size fraction group. These sediment yields provided a deeper understanding of sediment transport through a catchment and which particle size groups are most important in catchment erosion. An original contribution to research was made by estimating source contribution estimates for the four reservoirs, quantifying sediment yields for each catchment lithology and then for each catchment lithology by particle size. Mineral magnetic tracing of the catchments was applied for the first time in this region of South Africa.


Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1590
Author(s):  
Igor Prokopkin ◽  
Olesia Makhutova ◽  
Elena Kravchuk ◽  
Nadezhda Sushchik ◽  
Olesia Anishchenko ◽  
...  

The study of the trophic relationships of aquatic animals requires correct estimates of their diets. We compared the quantitative fatty acid signature analysis (QFASA) and the isotope-mixing model IsoError, based on the compound-specific isotope analysis of fatty acids (CSIA-FA), which are potentially effective models for quantitative diet estimations. In a 21-day experiment, Daphnia was fed a mixture of two food items, Chlorella and Cryptomonas, which were supplied in nearly equal proportions. The percentages and isotope values of the FAs of the algal species and Daphnia were measured. The IsoError based on CSIA-FA gave an estimation of algae consumption using only one FA, 18:3n-3. According to this model, the proportion of consumption of Chlorella decreased while the proportion of consumption of Cryptomonas increased during the experiment. The QFASA model was used for two FA subsets—the extended-dietary subset, which included sixteen FAs, and the dietary one, which included nine FAs. According to both subsets, the portion of consumed Chlorella decreased from Day 5 to 10 and then increased at Day 21. The comparison of the two model approaches showed that the QFASA model is a more reliable method to determine the contribution of different food sources to the diet of zooplankton than the CSIA-based mixing model.


2021 ◽  
Author(s):  
Emily Burt ◽  
et al.

Details on the chloride-based mixing model and oxygen isotope calculations, Table S1 (geochemical data), and Table S2 (sulfate and water mass balance calculations).<br>


Sign in / Sign up

Export Citation Format

Share Document