scholarly journals A COMPLETE SAMPLE OF BRIGHTSWIFTLONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION

2012 ◽  
Vol 749 (1) ◽  
pp. 68 ◽  
Author(s):  
R. Salvaterra ◽  
S. Campana ◽  
S. D. Vergani ◽  
S. Covino ◽  
P. D’Avanzo ◽  
...  
2019 ◽  
Vol 488 (4) ◽  
pp. 4607-4613 ◽  
Author(s):  
Guang-Xuan Lan ◽  
Hou-Dun Zeng ◽  
Jun-Jie Wei ◽  
Xue-Feng Wu

ABSTRACT We study the luminosity function and formation rate of long gamma-ray bursts (GRBs) by using a maximum likelihood method. This is the first time this method is applied to a well-defined sample of GRBs that is complete in redshift. The sample is composed of 99 bursts detected by the Swift satellite, 81 of them with measured redshift and luminosity for a completeness level of $82\, {\rm per\, cent}$. We confirm that a strong redshift evolution in luminosity (with an evolution index of $\delta =2.22^{+0.32}_{-0.31}$) or in density ($\delta =1.92^{+0.20}_{-0.21}$) is needed in order to reproduce the observations well. But since the predicted redshift and luminosity distributions in the two scenarios are very similar, it is difficult to distinguish between these two kinds of evolutions only on the basis of the current sample. Furthermore, we also consider an empirical density case in which the GRB rate density is directly described as a broken power-law function and the luminosity function is taken to be non-evolving. In this case, we find that the GRB formation rate rises like $(1+z)^{3.85^{+0.48}_{-0.45}}$ for $z\lesssim 2$ and is proportional to $(1+z)^{-1.07^{+0.98}_{-1.12}}$ for $z\gtrsim 2$. The local GRB rate is $1.49^{+0.63}_{-0.64}$ Gpc−3 yr−1. The GRB rate may be consistent with the cosmic star formation rate (SFR) at $z\lesssim 2$, but shows an enhancement compared to the SFR at $z\gtrsim 2$.


Author(s):  
Gianpiero Tagliaferri ◽  
Ruben Salvaterra ◽  
Sergio Campana ◽  
Stefano Covino ◽  
Paolo D’Avanzo ◽  
...  

Complete samples are the basis of any population study. To this end, we selected a complete subsample of Swift long bright gamma ray bursts (GRBs). The sample, made up of 58 bursts, was selected by considering bursts with favourable observing conditions for ground-based follow-up observations and with the 15–150 keV 1 s peak flux above a flux threshold of 2.6 photons cm −2  s −1 . This sample has a redshift completeness level higher than 90 per cent. Using this complete sample, we investigate the properties of long GRBs and their evolution with cosmic time, focusing in particular on the GRB luminosity function, the prompt emission spectral-energy correlations and the nature of dark bursts.


2021 ◽  
Vol 366 (4) ◽  
Author(s):  
Zhi-Ying Liu ◽  
Fu-Wen Zhang ◽  
Si-Yuan Zhu

2004 ◽  
Vol 611 (2) ◽  
pp. 1033-1040 ◽  
Author(s):  
Claudio Firmani ◽  
Vladimir Avila‐Reese ◽  
Gabriele Ghisellini ◽  
Alexander V. Tutukov

2011 ◽  
Vol 416 (3) ◽  
pp. 2174-2181 ◽  
Author(s):  
Xiao-Feng Cao ◽  
Yun-Wei Yu ◽  
K. S. Cheng ◽  
Xiao-Ping Zheng

Sign in / Sign up

Export Citation Format

Share Document