Production of high-performance and improved-durability Pt-catalyst /support for proton-exchange-membrane fuel cells with pulsed laser deposition

2016 ◽  
Vol 49 (25) ◽  
pp. 255601 ◽  
Author(s):  
Ting-Wei Huang ◽  
Hamza Qayyum ◽  
Guan-Ren Lin ◽  
Szu-yuan Chen ◽  
Chung-Jen Tseng
2020 ◽  
Vol 30 (6) ◽  
pp. 855-860
Author(s):  
Ruixiang Wang ◽  
Pengyang Zhang ◽  
Yucheng Wang ◽  
Yuesheng Wang ◽  
Karim Zaghib ◽  
...  

2014 ◽  
Vol 2 (19) ◽  
pp. 7015-7019 ◽  
Author(s):  
He-Yun Du ◽  
Chen-Hao Wang ◽  
Chen-Shuan Yang ◽  
Hsin-Cheng Hsu ◽  
Sun-Tang Chang ◽  
...  

A well-controlled Pt/PBI–CNT electrode provides not only good interfacial continuity but also numerous edge planes, which has strong electrochemical activity in HT-PEMFCs.


2019 ◽  
Author(s):  
Kevin Gu ◽  
Eric J. Kim ◽  
Sunil K. Sharma ◽  

<p>Carbon aerogel possesses unique structural and electrical properties, such as high mesopore volume, specific surface area, and electrical conductivity, which make it suitable for use as a catalyst support in Proton Exchange Membrane Fuel Cells (PEMFC). In this study, we present a novel synthesis of highly mesoporous carbon aerogel via ambient-drying and investigate its application in PEMFCs. The structural effects of activation on carbon aerogel were also studied. The TEM, XRF, Non Localized Density Function Theory (NLDFT) and BJH analysis were carried out to observe the morphology and pore structure. Pt on carbon aerogel and activated carbon aerogel show efficient activity in both oxygen reduction and hydrogen oxidation reactions compared to Pt on Vulcan XC-72, with increases up to 715% and 195% in specific power density, respectively. The enhanced performance of carbon aerogel is attributed to its large specific surface area and high mesopore to micropore ratio. Accelerated stress tests show that carbon aerogel has comparable durability with Vulcan XC-72, while activated carbon aerogel is less durable than both materials. Thus, the mesoporous carbon aerogel provides an efficient, lower-cost alternative to existing microporous carbon material as a catalyst support in PEMFCs.</p><p></p>


2019 ◽  
Vol 6 (12) ◽  
pp. 3065-3070 ◽  
Author(s):  
Xiangdong Ji ◽  
Peng Gao ◽  
Libo Zhang ◽  
Xiaoran Wang ◽  
Fanghui Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document