Nucleation for Lennard-Jones Fluid by Density Functional Theory

2005 ◽  
Vol 22 (6) ◽  
pp. 1378-1381 ◽  
Author(s):  
Fu Dong
2009 ◽  
Vol 1200 ◽  
Author(s):  
Markus E. Gruner

AbstractThis contribution reports static ionic displacements in ferromagnetic disordered Fe70Pd30 alloys obtained by relaxation of the ionic positions of a 108-atom supercell within the framework of density functional theory. Comparison with a simple statistical model based on Lennard-Jones pair interactions reveals that these displacements are significantly larger than can be explained by the different sizes of the elemental constituents. The discrepancies are presumably related to collective displacements of the Fe atoms. Corresponding distortions are experimentally observed for ordered Fe3Pt and predicted by first-principles calculations for all ordered Fe-rich L12 alloys with Ni group elements and originate from details of the electronic structure at the Fermi level.


1989 ◽  
Vol 2 (4-6) ◽  
pp. 393-411 ◽  
Author(s):  
Grant S. Heffelfinger ◽  
Ziming Tan ◽  
Keith E. Gubbins ◽  
Umberto Marini Bettolo Marconi ◽  
Frank Van Swol

2021 ◽  
Author(s):  
Simon Stephan ◽  
Jinlu Liu ◽  
Kai Langenbach ◽  
Walter G. Chapman ◽  
Hans Hasse

The vapor-liquid interface of the Lennard-Jones truncated and shifted (LTJS) fluid with a cut-off radius of 2.5 σ is investigated for temperatures covering the range between the triple point and the critical point. Three different approaches to model the vapor-liquid interface are used: molecular dynamics (MD) simulations, density gradient theory (DGT) and density functional theory (DFT). The surface tension, pressure and density profiles, including the oscillatory layering structure of the fluid at the interface, are investigated. The PeTS (Perturbed truncated and shifted) equation of state and PeTS-i functional, based on perturbation theory, are used to calculate the Helmholtz free energy in the DGT and DFT approach. They are consistent with the LJTS force field model. Overall, both DGT and DFT describe the results from computer experiments well. An oscillatory layering structure is found in MD and DFT.


Sign in / Sign up

Export Citation Format

Share Document