Variations of the gravitational constant from lunar laser ranging data

2007 ◽  
Vol 24 (17) ◽  
pp. 4533-4538 ◽  
Author(s):  
Jürgen Müller ◽  
Liliane Biskupek
Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Liliane Biskupek ◽  
Jürgen Müller ◽  
Jean-Marie Torre

Since 1969, Lunar Laser Ranging (LLR) data have been collected by various observatories and analysed by different analysis groups. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the Moon. This is a great advantage for various investigations in the LLR analysis. The aim of this study is to evaluate the benefit of the new LLR data for the determination of relativistic parameters. Here, we show current results for relativistic parameters like a possible temporal variation of the gravitational constant G˙/G0=(−5.0±9.6)×10−15yr−1, the equivalence principle with Δmg/miEM=(−2.1±2.4)×10−14, and the PPN parameters β−1=(6.2±7.2)×10−5 and γ−1=(1.7±1.6)×10−4. The results show a significant improvement in the accuracy of the various parameters, mainly due to better coverage of the lunar orbit, better distribution of measurements over the lunar retro-reflectors, and last but not least, higher accuracy of the data. Within the estimated accuracies, no violation of Einstein’s theory is found and the results set improved limits for the different effects.


2007 ◽  
Vol 16 (12a) ◽  
pp. 2127-2135 ◽  
Author(s):  
T. W. MURPHY ◽  
E. L. MICHELSON ◽  
A. E. ORIN ◽  
E. G. ADELBERGER ◽  
C. D. HOYLE ◽  
...  

APOLLO (the Apache Point Observatory Lunar Laser-ranging Operation) is a new effort in lunar laser ranging that uses the Apollo-landed retroreflector arrays to perform tests of gravitational physics. It achieved its first range return in October 2005, and began its science campaign the following spring. The strong signal (> 2500 photons in a ten-minute period) translates to one-millimeter random range uncertainty, constituting at least an order-of-magnitude gain over previous stations. One-millimeter range precision will translate into order-of-magnitude gains in our ability to test the weak and strong equivalence principles, the time rate of change of Newton's gravitational constant, the phenomenon of gravitomagnetism, the inverse-square law, and the possible presence of extra dimensions. An outline of the APOLLO apparatus and its initial performance is presented, as well as a brief discussion on future space technologies that can extend our knowledge of gravity by orders of magnitude.


2009 ◽  
Vol 5 (S261) ◽  
pp. 200-203
Author(s):  
T. W. Murphy ◽  
E. G. Adelberger ◽  
J. B. R. Battat ◽  
C. D. Hoyle ◽  
R. J. McMillan ◽  
...  

AbstractLunar laser ranging (LLR) has long provided many of our best measurements on the fundamental nature of gravity, including the strong equivalence principle, time -rate-of-change of the gravitational constant, the inverse square law, geodetic precession, and gravitomagnetism. This paper serves as a brief overview of APOLLO: a recently operational LLR experiment capable of millimeter-level range precision.


Author(s):  
C. Veillet ◽  
J. F. Mangin ◽  
J. E. Chabaubie ◽  
C. Dumolin ◽  
D. Feraudy ◽  
...  

2005 ◽  
Vol 14 (10) ◽  
pp. 1657-1666 ◽  
Author(s):  
GUANGYU LI ◽  
HAIBIN ZHAO

In the experimental tests of gravity, there have been considerable interests in the possibility of intermediate-range gravity. In this paper, we use the earth–satellite measurement of earth gravity, the lunar orbiter measurement of lunar gravity, and lunar laser ranging measurement to constrain the intermediate-range gravity from λ = 1.2 × 107 m –3.8 × 108 m . The limits for this range are α = 10-8–5 × 10-8, which improve previous limits by about one order of magnitude in the range λ = 1.2 × 107 m –3.8 × 108 m .


2021 ◽  
Author(s):  
Vishwa Vijay Singh ◽  
Liliane Biskupek ◽  
Jürgen Müller ◽  
Mingyue Zhang

<p>The distance between the observatories on Earth and the retro-reflectors on the Moon has been regularly observed by the Lunar Laser Ranging (LLR) experiment since 1970. In the recent years, observations with bigger telescopes (APOLLO) and at infra-red wavelength (OCA) are carried out, resulting in a better distribution of precise LLR data over the lunar orbit and the observed retro-reflectors on the Moon, and a higher number of LLR observations in total. Providing the longest time series of any space geodetic technique for studying the Earth-Moon dynamics, LLR can also support the estimation of Earth orientation parameters (EOP), like UT1. The increased number of highly accurate LLR observations enables a more accurate estimation of the EOP. In this study, we add the effect of non-tidal station loading (NTSL) in the analysis of the LLR data, and determine post-fit residuals and EOP. The non-tidal loading datasets provided by the German Research Centre for Geosciences (GFZ), the International Mass Loading Service (IMLS), and the EOST loading service of University of Strasbourg in France are included as corrections to the coordinates of the LLR observatories, in addition to the standard corrections suggested by the International Earth Rotation and Reference Systems Service (IERS) 2010 conventions. The Earth surface deforms up to the centimetre level due to the effect of NTSL. By considering this effect in the Institute of Geodesy (IfE) LLR model (called ‘LUNAR’), we obtain a change in the uncertainties of the estimated station coordinates resulting in an up to 1% improvement, an improvement in the post-fit LLR residuals of up to 9%, and a decrease in the power of the annual signal in the LLR post-fit residuals of up to 57%. In a second part of the study, we investigate whether the modelling of NTSL leads to an improvement in the determination of EOP from LLR data. Recent results will be presented.</p>


1992 ◽  
Vol 16 (3) ◽  
pp. 358
Author(s):  
Jin Wen-jing ◽  
Nie Zhao-ming ◽  
Li Jin-ling

Sign in / Sign up

Export Citation Format

Share Document