Non-static spherically symmetric charged dust distribution in general relativity

1968 ◽  
Vol 1 (6) ◽  
pp. 645-649 ◽  
Author(s):  
U K De
1980 ◽  
Vol 33 (4) ◽  
pp. 765 ◽  
Author(s):  
BK Nayak

The Einstein-Maxwell field equations characterizing a spherically symmetric charged dust distnbution are solved exactly without imposing any mathematical condition on them. The solution is expressed in terms of two arbitrary variables and these can be chosen to correspond to an arbitrary ratio of charge density to mass density, thus allowing the possibility of understanding the interior of the horizon in a more precise manner.


2010 ◽  
Author(s):  
H. Vargas-Rodriguez ◽  
R. A. Gonzalez-Silva ◽  
L. I. Lopez Benitez ◽  
H. A. Morales-Tecotl ◽  
L. A. Urena-Lopez ◽  
...  

1972 ◽  
Vol 9 (1) ◽  
pp. 64-68 ◽  
Author(s):  
R. M. Misra ◽  
D. B. Pandey ◽  
D. C. Srivastava

The paper presents a family of stationary cylindrically symmetric solutions of the Einstein-Maxwell equations corresponding to a charged dust distribution in rigid rotation. The interesting feature of the solution is that the Lorentz force vanishes everywhere and the ratio of the charge density and mass density may assume arbitrary value. The solutions do not seem to have any classical analogue.


1983 ◽  
Vol 16 (13) ◽  
pp. 3013-3017
Author(s):  
S K Chakraborty ◽  
N Bandyopadhyay

Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


1994 ◽  
Vol 11 (4) ◽  
pp. L69-L72 ◽  
Author(s):  
Salah Haggag ◽  
Joseph Hajj-Boutros

Sign in / Sign up

Export Citation Format

Share Document