Low-temperature series for the square lattice Ising model with first- and second-neighbour interactions

1987 ◽  
Vol 20 (5) ◽  
pp. 1269-1276 ◽  
Author(s):  
J Oitmaa ◽  
M J Velgakis
2002 ◽  
Vol 16 (32) ◽  
pp. 4911-4917
Author(s):  
YEE MOU KAO ◽  
MALL CHEN ◽  
KEH YING LIN

We have calculated the low-temperature series expansions of the spontaneous magnetization and the zero-field susceptibility of the square-lattice ferromagnetic Ising model with first-neighbour interaction J1 and second-neighbour interaction J2 to the 30th and 26th order respectively by computer. Our results extend the previous calculations by Lee and Lin to six more orders. We use the Padé approximants to estimate the critical exponents and the critical temperature for different ratios of R = J2/J1. The estimated critical temperature as a function of R agrees with the estimation by Oitmaa from high-temperature series expansions.


1970 ◽  
Vol 3 (8) ◽  
pp. 1652-1660 ◽  
Author(s):  
C Domb ◽  
A J Guttmann

Author(s):  
Kirill Tsiberkin ◽  

The paper presents a numerical analysis of equilibrium state and spin configuration of square lattice Ising model with competing interaction. The most detailed description is given for case of ferromagnetic interaction of the first-order neighbours and antiferromagnetic coupling of the second-order neighbours. The numerical method is based on Metropolis algorithm. It uses 128×128 lattice with periodic boundary conditions. At first, the simulation results show that the system is in saturation state at low temperatures, and it turns into paramagnetic state at the Curie point. The competing second-order interaction makes possible the domain structure realization. This state is metastable, because its energy is higher than saturation energy. The domains are small at low temperature, and their size increases when temperature is growing until the single domain occupies the whole simulation area. In addition, the antiferromagnetic coupling of the second-order neighbours reduces the Curie temperature of the system. If it is large enough, the lattice has no saturation state. It turns directly from the domain state into paramagnetic phase. There are no extra phases when the system is antiferromagnetic in main order, and only the Neel temperature shift realizes here.


Sign in / Sign up

Export Citation Format

Share Document