scholarly journals Global bounds for the Lyapunov exponent and the integrated density of states of random Schrödinger operators in one dimension

2000 ◽  
Vol 33 (46) ◽  
pp. 8231-8240 ◽  
Author(s):  
Vadim Kostrykin ◽  
Robert Schrader
2019 ◽  
Vol 27 (4) ◽  
pp. 253-259
Author(s):  
Hayk Asatryan ◽  
Werner Kirsch

Abstract We consider one-dimensional random Schrödinger operators with a background potential, arising in the inverse scattering problem. We study the influence of the background potential on the essential spectrum of the random Schrödinger operator and obtain Anderson localization for a larger class of one-dimensional Schrödinger operators. Further, we prove the existence of the integrated density of states and give a formula for it.


2018 ◽  
Vol 2020 (17) ◽  
pp. 5279-5341 ◽  
Author(s):  
Peter D Hislop ◽  
Christoph A Marx

Abstract We prove that the density of states measure (DOSm) for random Schrödinger operators on $\mathbb{Z}^d$ is weak-$^{\ast }$ Hölder-continuous in the probability measure. The framework we develop is general enough to extend to a wide range of discrete, random operators, including the Anderson model on the Bethe lattice, as well as random Schrödinger operators on the strip. An immediate application of our main result provides quantitive continuity estimates for the disorder dependence of the DOSm and the integrated density of states (IDS) in the weak disorder regime. These results hold for a general compactly supported single-site probability measure, without any further assumptions. The few previously available results for the disorder dependence of the IDS valid for dimensions $d \geqslant 2$ assumed absolute continuity of the single-site measure and thus excluded the Bernoulli–Anderson model. As a further application of our main result, we establish quantitative continuity results for the Lyapunov exponent of random Schrödinger operators for $d=1$ in the probability measure with respect to the weak-$^{\ast }$ topology.


1999 ◽  
Vol 11 (02) ◽  
pp. 187-242 ◽  
Author(s):  
V. KOSTRYKIN ◽  
R. SCHRADER

Methods from scattering theory are introduced to analyze random Schrödinger operators in one dimension by applying a volume cutoff to the potential. The key ingredient is the Lifshitz–Krein spectral shift function, which is related to the scattering phase by the theorem of Birman and Krein. The spectral shift density is defined as the "thermodynamic limit" of the spectral shift function per unit length of the interaction region. This density is shown to be equal to the difference of the densities of states for the free and the interacting Hamiltonians. Based on this construction, we give a new proof of the Thouless formula. We provide a prescription how to obtain the Lyapunov exponent from the scattering matrix, which suggest a way how to extend this notion to the higher dimensional case. This prescription also allows a characterization of those energies which have vanishing Lyapunov exponent.


Author(s):  
Mira Shamis

Abstract Recently, Hislop and Marx studied the dependence of the integrated density of states on the underlying probability distribution for a class of discrete random Schrödinger operators and established a quantitative form of continuity in weak* topology. We develop an alternative approach to the problem, based on Ky Fan inequalities, and establish a sharp version of the estimate of Hislop and Marx. We also consider a corresponding problem for continual random Schrödinger operators on $\mathbb{R}^d$.


Author(s):  
Hatem Najar

We consider random Schrödinger operatorsHωacting onl2(ℤd). We adapt the technique of the periodic approximations used in (2003) for the present model to prove that the integrated density of states ofHωhas a Lifshitz behavior at the edges of internal spectral gaps if and only if the integrated density of states of a well-chosen periodic operator is nondegenerate at the same edges. A possible application of the result to get Anderson localization is given.


Sign in / Sign up

Export Citation Format

Share Document