Alfven resonances, forced magnetic reconnection and model of solar flares

2003 ◽  
Vol 45 (6) ◽  
pp. 949-955
Author(s):  
C Uberoi
2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Xin Yao ◽  
Patricio A. Muñoz ◽  
Jörg Büchner ◽  
Xiaowei Zhou ◽  
Siming Liu

Type III radio bursts are radio emissions associated with solar flares. They are considered to be caused by electron beams travelling from the solar corona to the solar wind. Magnetic reconnection is a possible accelerator of electron beams in the course of solar flares since it causes unstable distribution functions and density inhomogeneities (cavities). The properties of radio emission by electron beams in an inhomogeneous environment are still poorly understood. We capture the nonlinear kinetic plasma processes of the generation of beam-related radio emissions in inhomogeneous plasmas by utilizing fully kinetic particle-in-cell code numerical simulations. Our model takes into account initial electron velocity distribution functions (EVDFs) as they are supposed to be created by magnetic reconnection. We focus our analysis on low-density regions with strong magnetic fields. The assumed EVDFs allow two distinct mechanisms of radio wave emissions: plasma emission due to wave–wave interactions and so-called electron cyclotron maser emission (ECME) due to direct wave–particle interactions. We investigate the effects of density inhomogeneities on the conversion of free energy from the electron beams into the energy of electrostatic and electromagnetic waves via plasma emission and ECME, as well as the frequency shift of electron resonances caused by perpendicular gradients in the beam EVDFs. Our most important finding is that the number of harmonics of Langmuir waves increases due to the presence of density inhomogeneities. The additional harmonics of Langmuir waves are generated by a coalescence of beam-generated Langmuir waves and their harmonics.


1998 ◽  
Vol 188 ◽  
pp. 9-12 ◽  
Author(s):  
Kazunari Shibata

Recent development on the theory and numerical modeling of solar flares and jets is reviewed with emphasis on the magnetic reconnection model. Application to protostellar flares and jets is also discussed.


2000 ◽  
Vol 195 ◽  
pp. 413-414
Author(s):  
S. Masuda

Extended AbstractThe Hard X-ray Telescope (HXT: Kosugi et al. 1991) onboard Yohkoh has observed that, in impulsive solar flares, a hard X-ray source is located above the apex of a soft X-ray flaring loop, in addition to double footpoint sources (Masuda et al. 1994, 1995). This observation suggests that flare energy-release, probably magnetic reconnection, takes place not in the soft X-ray loop but above the loop. It is important to derive the hard X-ray spectrum of the above-the-looptop source accurately in order to understand how electrons are energized there. The above-the-looptop source was most clearly observed during the 13 January 1992 flare. However, the count rate, especially in the H-band (53–93 keV), is too small to synthesize high-quality images and to derive an accurate spectrum.


Sign in / Sign up

Export Citation Format

Share Document