Molecular dynamics simulation of CuI using a three-body potential

2000 ◽  
Vol 12 (28) ◽  
pp. 6173-6182 ◽  
Author(s):  
W Sekkal ◽  
A Zaoui ◽  
A Laref ◽  
M Certier ◽  
H Aourag
2013 ◽  
Vol 336 ◽  
pp. 47-55
Author(s):  
Jamal Davoodi ◽  
Samaneh Khoshkhatti

In this research, the thermal conductivity of aluminum (Al) in macro scale was investigated by the molecular dynamics simulation technique. We used FORTRAN programming in the simulations and used a fixed number of atoms, N, confined to a fixed pressure, P, and maintained at a constant preset temperature, T, i.e. the NPT ensemble. The Sutton-Chen many-body potential was used to calculate energy and force. The temperature and pressure of the system were controlled by Nosé-Hoover thermostat and Berendsen barostat respectively. We could solve the equations of motion using the Velocity Verlet algorithm. We calculated the thermal conductivity of Al in the macro scale using the Green-Kubo method. Moreover, we have studied the effect of increasing temperature on the value of the thermal conductivity of Al. The obtained results showed that the computed thermal conductivities are in good agreement with experimental data.


Sign in / Sign up

Export Citation Format

Share Document