Monte Carlo simulation of extensive air showers initiated by gamma rays and protons

1991 ◽  
Vol 17 (8) ◽  
pp. 1303-1315 ◽  
Author(s):  
S Mikocki ◽  
A Trzupek ◽  
J Gress ◽  
J Kochocki ◽  
J Poirier
1967 ◽  
Vol 164 (5) ◽  
pp. 1567-1583 ◽  
Author(s):  
Hale V. Bradt ◽  
Saul A. Rappaport

1968 ◽  
Vol 46 (10) ◽  
pp. S189-S196 ◽  
Author(s):  
K. O. Thielheim ◽  
E. K. Schlegel ◽  
R. Beiersdorf

Three-dimensional Monte Carlo calculations have been performed on the trajectories of high-energy hadrons in extensive air showers. The central electron density and gradient of distribution are obtained for individual electromagnetic cascades together with coordinates at the level of observation. Various assumptions concerning primary mass number and energy, distributions of strong interaction parameters, and fragmentation mechanisms are discussed with respect to the production of steep maxima of electron density by single electromagnetic cascades in the core region of extensive air showers.


2005 ◽  
Vol 20 (29) ◽  
pp. 7016-7019 ◽  
Author(s):  
A. MISHEV ◽  
S. MAVRODIEV ◽  
J. STAMENOV

We present a new method for ground based gamma ray astronomy based only on atmospheric Cherenkov light flux analysis. The Cherenkov light flux densities in extensive air showers initiated by different primaries are simulated in the energy range 100 GeV – 100 PeV for different primaries using the CORSIKA 6.003 code at (536 g/cm2). An approximation of lateral distribution of Cherenkov light flux densities in EAS is obtained using a nonlinear fit such as Breit-Wigner. The simulated and reconstructed events are compared and the accuracy in energy and primary mass reconstruction are obtained.


2010 ◽  
Vol 25 (20) ◽  
pp. 3953-3964
Author(s):  
A. GERANIOS ◽  
D. KOUTSOKOSTA ◽  
O. MALANDRAKI ◽  
H. ROSAKI-MAVROULI

Ultra-High Energy Cosmic Rays (UHECR) (E ≥ 5 × 1019 eV ) are detected through Extensive Air Showers that are created when a primary cosmic ray particle interacts with the atmosphere of the Earth. The energy of the primary particle can be estimated experimentally based on simulations. In this paper, we attempt to estimate the energy of UHECR gamma ray photons by applying a Monte Carlo simulation code and we compare the results with the ones derived in our previous papers for hadron initiated showers. The scenario of simulations is adapted to the P. Auger Observatory site.


Sign in / Sign up

Export Citation Format

Share Document