energy distributions
Recently Published Documents


TOTAL DOCUMENTS

2557
(FIVE YEARS 200)

H-INDEX

97
(FIVE YEARS 6)

2022 ◽  
Vol 209 ◽  
pp. 114384
Author(s):  
Ooraphan Chirayutthanasak ◽  
Rajchawit Sarochawikasit ◽  
Apiwat Wisitsorasak ◽  
Nopporn Rujisamphan ◽  
Timofey Frolov ◽  
...  

2022 ◽  
Vol 1049 ◽  
pp. 192-197
Author(s):  
Muxtor K. Karimov ◽  
F.O. Kuryozov ◽  
Sh.R. Sadullaev ◽  
M.U. Otabaev ◽  
S.B. Bobojonova

In this paper presents the computer simulation results on the investigations of the ion scattering processe on the defect InP(001)<110>,<ī10> surface under low-energy grazing ion bombardment have been presented. The peculiarities trajectories of the scattered ions from surface defect, atomic chain and semichannel have been investigated by computer simulation. It was found some trajectories nearby surface atomic chain which have loop shape and a line form. At grazing ion incidence, from a correlation of the experimental and calculated energy distributions of the scattered particles, one may determine a spatial extension of the missing atom on the monocrystal surface damaged by the ion bombardment.


2022 ◽  
Vol 92 (2) ◽  
pp. 279
Author(s):  
И.П. Щербаков ◽  
А.Е. Чмель

The mechanical fracture of silicon dioxide initiates the mechanoluminescence (ML) lighting due to multiple breakage of interatomic bonds with producing non-bridged oxygen groups of [Si–O–]. The detected ML signals consisted of series of pulses, the energy of which is proportional to the number of photons irradiated from the broken bonds. The comparative analysis of the energy distributions in ML series induced by the impact damage of the surface of crystalline and vitreous SiO2 before and after the Ar+-ion implantation was conducted. The interplay between random and correlated accumulation of broken bonds under the impact loading was found and discussed.


Author(s):  
Alessio Parisi ◽  
Pawel Olko ◽  
Jan Swakon ◽  
Tomasz Horwacik ◽  
Hubert Jablonski ◽  
...  

Abstract Objective Treatment planning based on computer simulations were proposed to account for the increase in the relative biological effectiveness (RBE) of proton radiotherapy beams near to the edges of the irradiated volume. Since silicon detectors could be used to validate the results of these simulations, it is important to explore the limitations of this comparison. Approach Microdosimetric measurements with a MicroPlus Bridge V2 silicon detector (thickness = 10 µm) were performed along the Bragg peak of a clinical proton beam. The lineal energy distributions, the dose mean values, and the RBE calculated with a biological weighting function were compared with simulations with PHITS (microdosimetric target = 1 µm water sphere), and published clonogenic survival in vitro RBE data for the V79 cell line. The effect of the silicon-to-water conversion was also investigated by comparing three different methodologies (conversion based on a single value, novel bin-to-bin conversions based on SRIM and PSTAR). Main results Mainly due to differences in the microdosimetric targets, the experimental dose-mean lineal energy and RBE values at the distal edge were respectively up to 53% and 28% lower than the simulated ones. Furthermore, the methodology chosen for the silicon-to-water conversion was proven to affect the dose mean lineal energy and the RBE10 up to 32% and 11% respectively. The best methodology to compensate for this underestimation was the bin-to-bin silicon-to-water conversion based on PSTAR. Significance This work represents the first comparison between PHITS-simulated lineal energy distributions in water targets and corresponding experimental spectra measured with silicon detectors. Furthermore, the effect of the silicon-to-water conversion on the RBE was explored for the first time. The proposed methodology based on the PSTAR bin-to-bin conversion appears to provide superior results with respect to commonly used single scaling factors and is recommended for future studies.


Author(s):  
A. E. Ieshkin ◽  
A. A. Tatarintsev ◽  
D. S. Kireev ◽  
V. I. Bachurin ◽  
A. S. Rudyi

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 494
Author(s):  
Timur Dzhatdoev ◽  
Vladimir Galkin ◽  
Egor Podlesnyi

Extreme TeV blazars (ETBs) are active galactic nuclei with jets presumably pointing towards the observer having their intrinsic (compensated for the effect of γ-ray absorption on extragalactic background light photons) spectral energy distributions (SEDs) peaked at an energy in excess of 1 TeV. These sources typically reveal relatively weak and slow variability as well as higher frequency of the low-energy SED peak compared to other classes of blazars. It proved to be exceedingly hard to incorporate all these peculiar properties of ETBs into the framework of conventional γ-ray emission models. ETB physics have recently attracted great attention in the astrophysical community, underlying the importance of the development of self-consistent ETB emission model(s). We propose a new scenario for the formation of X-ray and γ-ray spectra of ETBs assuming that electromagnetic cascades develop in the infrared photon field surrounding the central blazar engine. This scenario does not invoke compact fast-moving sources of radiation (so-called “blobs”), in agreement with the apparent absence of fast and strong variability of ETBs. For the case of the extreme TeV blazar 1ES 0229+200 we propose a specific emission model in the framework of the considered scenario. We demonstrate that this model allows to obtain a good fit to the measured SED of 1ES 0229+200.


Author(s):  
Lunhua Shang ◽  
Juntao Bai ◽  
Shijun Dang ◽  
Qijun Zhi

Abstract We report the “Bi-drifting” subpulses observed in PSR J0815+0939 using the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The observation at band from 1050-1450MHz is evenly divided into two bands, i.e., the bands at center frequencies 1150MHz and 1350 MHz. The mean pulse profiles and the “Bi-drifting” subpulses at this two bands are investigated. It is found that the pulse profiles at this two frequencies show four emission components, and the peak separations between four emission components decrease with the increase of frequency. In addition, the ratio of peak intensity of each component to the intensity of component IV at 1150MHz is larger than that at 1350 MHz. We carry out an analysis of the longitude-resolved fluctuation spectrum and two-dimensional fluctuation spectrum for each emission component, and find that the P3 of components I, II and III are about 10.56, 10.57 and 10.59 s at 1150MHz and 1350 MHz. However, the reliable measurements of P3 of component IV and P2 for these four components were not obtained due to the low signal-to-noise ratio of observation data. The pulse energy distributions at frequencies 1150 and 1350MHz are presented, and it is found that no nulling phenomenon have been found in this pulsar. With our observation from the FAST, the “Bi-drifting” subpulse phenomenon of PSR J0815+0939 is expanded from 400MHz to 1350 MHz, which is helpful for the relevant researchers to test and constrain the pulsar emission model, especially the model of “Bi-drifting” subpulse.


2021 ◽  
Author(s):  
Diana Bachiller-Perea ◽  
Mingming Zhang ◽  
Celeste Fleta ◽  
David Quirion ◽  
Daniela Bassignana ◽  
...  

Abstract Purpose: The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Methodology: Each system consists of arrays of independent microdetectors covering 2 mm×2 mm and 0.4 mm×12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11×11 microdetectors and 3×3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unit-cell of both arrays is a new type of 3D cylindrical diode with a 25 µm diameter and a 20 µm depth that results in a well-defined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 18 MeV at clinical-equivalent fluence rates. Results: The microdosimetry quantities were obtained with a spatial resolution of 200 µm and 600 µm for the 11×11 system and for the 3×3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. Conclusion: We have studied the microdosimetry response under clinical equivalent fluence rate of the first multi-arrays of 3D cylindrical microdetectors covering several centimeters of sensitive area. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.


Sign in / Sign up

Export Citation Format

Share Document