Dynamical hierarchies of structure and control in chemical reaction networks*

1999 ◽  
Vol 10 (4) ◽  
pp. 464-471 ◽  
Author(s):  
Christian Siehs ◽  
Bernd Mayer ◽  
Christian Siehs
2017 ◽  
Vol 13 ◽  
pp. 1486-1497 ◽  
Author(s):  
Albert S Y Wong ◽  
Wilhelm T S Huck

A new discipline of “systems chemistry” is emerging, which aims to capture the complexity observed in natural systems within a synthetic chemical framework. Living systems rely on complex networks of chemical reactions to control the concentration of molecules in space and time. Despite the enormous complexity in biological networks, it is possible to identify network motifs that lead to functional outputs such as bistability or oscillations. To truly understand how living systems function, we need a complete understanding of how chemical reaction networks (CRNs) create function. We propose the development of a bottom-up approach to design and construct CRNs where we can follow the influence of single chemical entities on the properties of the network as a whole. Ultimately, this approach should allow us to not only understand such complex networks but also to guide and control their behavior.


2009 ◽  
Vol 15 (5) ◽  
pp. 578-597
Author(s):  
Marcello Farina ◽  
Sergio Bittanti

2021 ◽  
Author(s):  
Samuel M. Blau ◽  
Hetal D Patel ◽  
Evan Walter Clark Spotte-Smith ◽  
Xiaowei Xie ◽  
Shyam Dwaraknath ◽  
...  

Modeling reactivity with chemical reaction networks could yield fundamental mechanistic understanding that would expedite the development of processes and technologies for energy storage, medicine, catalysis, and more. Thus far, reaction...


2020 ◽  
Vol 53 (2) ◽  
pp. 11497-11502
Author(s):  
Lőrinc Márton ◽  
Katalin M. Hangos ◽  
Gábor Szederkényi

2018 ◽  
Vol 71 ◽  
pp. 52-62 ◽  
Author(s):  
Lőrinc Márton ◽  
Gábor Szederkényi ◽  
Katalin M. Hangos

Sign in / Sign up

Export Citation Format

Share Document